
z/OS Communications Server

IPv6 Network and Application Design
Guide
Version 1 Release 12

SC31-8885-08

���

z/OS Communications Server

IPv6 Network and Application Design
Guide
Version 1 Release 12

SC31-8885-08

���

Note:
Before using this information and the product it supports, read the information in “Notices” on page 167.

Ninth Edition (September 2010)

This edition applies to Version 1 Release 12 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-4028

Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:
v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2002, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

Tables . ix

About this document . xi
Who should read this document . xi
How this document is organized . xi
How to use this document . xi

Determining whether a publication is current . xii
How to contact IBM service . xii

Conventions and terminology that are used in this document xii
Prerequisite and related information . xiii
How to send your comments . xvii

Summary of changes . xix

Chapter 1. Internet Protocol Version 6 . 1
Neighbor discovery . 3
Comparison of IPv6 and IPv4 characteristics . 4

Chapter 2. IPv6 addressing . 7
Textual representation of IPv6 addresses . 7
Textual representation of IPv6 prefixes. 8
IPv6 address space . 9
IPv6 addressing model . 9
Scope zones . 9
Categories of IPv6 addresses. 10

Unicast IPv6 addresses . 11
Multicast IPv6 Addresses . 14
Anycast IPv6 addresses . 17

Typical IPv6 addresses assigned to a node . 17
IPv6 address states . 17

Chapter 3. IPv6 protocol . 19
Extension headers . 19
Fragmentation in an IPv6 network. 20

Fragmentation and UDP/RAW . 20
Path MTU discovery . 20
IPv6 routing . 20

Router discovery . 21
ICMPv6 redirects . 22
Dynamic routing protocols . 22
Considerations for route selection . 24
Considerations for multipath routes . 24
The VARY TCPIP,,OBEYFILE command and routes . 25

ICMPv6 . 25
Multicast Listener Discovery. 26
Neighbor discovery. 27

Router advertisements . 27
Redirect processing . 32
Duplicate address detection . 32
Address resolution . 33
Neighbor unreachability detection . 34

Assigning IP addresses to interfaces . 34

© Copyright IBM Corp. 2002, 2010 iii

Stateless address autoconfiguration . 34
IP address takeover following an interface failure. 35
How to get addresses for VIPAs . 36

IPv6 temporary addresses with random interface IDs . 37
Configuring a TCP/IP stack to generate IPv6 temporary addresses 37
Enabling a client application to use IPv6 temporary or public addresses 38
Displaying the configured and generated temporary or public address information 39

Default address selection . 40
Policy table for IPv6 default address selection . 40
Default destination address selection . 41
Default source address selection . 43
Configuring the policy table for default address selection 45
Displaying the policy table for default address selection 46

Enabling IPv6 communication between IPv6 nodes or networks in an IPv4 environment 46
Enabling end-to-end communication between IPv4 and IPv6 applications 47

IPv6 application on a dual-mode stack . 47
IPv4 application on a dual-mode stack . 48
Application layer gateways and protocol translation . 49

Considerations for configuring z/OS for IPv6 . 50
IPv4-only stack . 50
IPv6-only stack . 51
Dual-mode stack . 51

INET considerations . 51
IPv4-only stack . 51
Dual-mode IPv4/IPv6 stack . 52

Common INET considerations . 52
Enabling AF_INET6 support in a Common INET environment 52
Disabling AF_INET6 support in a Common INET environment 53
Supporting a mixture of dual-mode stacks and IPv4-only stacks 53
Configuring a Common INET environment. 54

Chapter 4. Configuring support for z/OS . 55
Ensure that important features are supported over IPv6 . 55
Assess automation and application impacts due to Netstat and message changes 55
Determine how remote sites connect to the local host . 55
SNA access . 56
Avoid using IP addresses for identifying remote hosts . 56
Using the BIND parameter on the PORT statement . 57
Security considerations . 57
Support for scope information . 58
Enabling IPv6 support . 60

Configuration statements for configuring IPv6 addresses 61
Resolver processing. 62

Resolver configuration. 62
Resolver communications with the Domain Name System 63

User exits . 64
Which applications started with inetd are IPv6 enabled? . 64

Modifying the inetd.conf file . 64
IPv6 and SMF records . 65
IPv6 and the Policy Agent . 65
IPv6 and SNMP . 66
Monitoring the TCP/IP network . 66

IPv6 and Netstat. 67
IPv6 and Ping and Traceroute . 68

Diagnosing problems with IPv6 . 68

Chapter 5. Configuration guidelines . 69
Connecting to an IPv6 network . 69
Assigning IPv6 addresses. 70
Updating DNS definitions . 72

iv z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

||

||
||

Including static VIPAs in DNS . 72
Defining IPv4-only host names and IPv4/IPv6 host names 72

Using source VIPA . 73
Using dynamic or static routing to improve network selection 73
Connecting to non-local IPv4 locations . 74
IPv6-only application access to IPv4-only application . 74

Chapter 6. API support . 75
UNIX socket APIs . 76
Native TCP/IP socket APIs . 76

Chapter 7. Basic socket API extensions for IPv6 79
Design considerations . 79

Protocol families. 79
Address families. 79
Special IP addresses . 80

Name and address resolution functions . 81
Protocol-independent nodename and service name translation 81
Socket address structure to host name and service name 86
Address conversion functions . 87
Address testing macros . 88

Interface identification . 89
Socket options to support IPv6 . 89

Option to control sending of unicast packets . 90
Options to control sending of multicast packets . 90
Options to control receiving of multicast packets . 91
Socket option to control IPv4 and IPv6 communications 93
Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO_IP levels 93

Chapter 8. Enabling an application for IPv6 . 95
Changes to enable IPv6 support . 95
Support for unmodified applications . 95

Application awareness of whether system is IPv6 enabled 95
Socket address structure changes . 98
Address conversion functions . 98
Resolver API processing . 98
Special IPv6 addresses . 99
Passing ownership of sockets across applications using givesocket and takesocket APIs 99
Using multicast and IPv6 . 100
IP addresses might not be permanent . 101
Including IP addresses in the data stream . 101
Example of an IPv4 TCP server program . 101
Example of the simple TCP server program enabled for IPv6 102

Chapter 9. Advanced socket APIs. 105
Controlling the content of the IPv6 packet header . 105

Socket options and ancillary data to support IPv6 (IPPROTO_IPV6 level) 106
Socket option to support ICMPv6 (IPPROTO_ICMPV6 level) 117

Using ancillary data on sendmsg() and recvmsg() . 118
Interactions between socket options and ancillary data . 120

Hop limit options . 120
Options for setting the source address . 120
Options for specifying the outgoing interface . 121

RAW sockets . 121
RAW protocol values . 122
Application visibility of IP headers . 122
ICMP considerations . 123
Checksumming data . 124

Chapter 10. Advanced concepts and topics 125

Contents v

Tunneling . 125
Configured tunnels . 126
Automatic tunnels . 127
6to4 addresses . 127
6over4 tunnels . 128

Application migration and coexistence overview . 129
Application migration approaches . 131

Translation mechanisms . 131

Appendix A. IPv6 support tables . 135
Supported IPv6 standards . 135
Application support of scope information on host name or IP address 136
z/OS-specific features . 137
Applications not enabled for IPv6 . 140

Appendix B. Related protocol specifications 141

Appendix C. Accessibility . 165

Notices . 167
Policy for unsupported hardware. 174
Trademarks . 175

Bibliography. 177

Index . 181

Communicating your comments to IBM . 183

vi z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Figures

1. IPv6 address space . 2
2. Unicast address format . 11
3. Global unicast address format . 12
4. Link-local address format . 12
5. IPv4-mapped IPv6 address . 13
6. OSA-Express QDIO interface ID format . 14
7. Multicast address format . 15
8. Flags in multicast address. 15
9. Communicating between IPv6 nodes or networks in an IPv4 environment 46

10. Communicating between IPv4 and IPv6 applications . 47
11. IPv6 application on dual-mode stack . 48
12. IPv4-only application on a dual-mode stack . 49
13. Mixing dual-mode and IPv4-only stacks . 54
14. z/OS socket APIs . 75
15. Example of protocol-independent client application . 97
16. Tunneling . 126
17. 6to4 address format . 128
18. 6over4 address format . 129
19. Dual-mode stack IP host . 130
20. Application communication on a dual-mode host . 131

© Copyright IBM Corp. 2002, 2010 vii

viii z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Tables

1. Comparison of IPv4 and IPv6 . 4
2. Address types . 7
3. Address type representation . 9
4. Multicast scope field values . 15
5. Default policy table for IPv6 default address selection 40
6. Source address selection . 44
7. IPv6 support for different policy types . 65
8. sockaddr format for AF_INET . 80
9. sockaddr format for AF_INET6 . 80

10. Special IP addresses. 80
11. Getaddrinfo application capabilities 1 . 83
12. Getaddrinfo application capabilities 2 . 84
13. Address conversion functions . 88
14. Address testing macros . 88
15. Function calls . 89
16. Socket options for getsockopt() and setsockopt() . 90
17. Using socket() to determine IPv6 enablement . 96
18. sockaddr structure changes . 98
19. Address conversion function changes . 98
20. Resolver API changes . 99
21. Special IPv6 address changes. 99
22. givesocket() and takesocket() changes . 99
23. Multicast options . 100
24. Sockets options at the IPPROTO_IPV6 level . 106
25. Ancillary data on sendmsg() (Level = IPPROTO_IPV6). 107
26. Ancillary data on recvmsg() (Level = IPPROTO_IPV6) 107
27. Sockets options at the IPPROTO_ICMPV6 level . 117
28. Macros used to manipulate filter value . 118
29. Supported IPv6 standards . 135
30. Application support for scope information . 136
31. Link-layer device support . 137
32. Virtual IP Addressing support . 137
33. Sysplex support. 138
34. IP routing functions . 138
35. Miscellaneous IP/IF-layer functions . 138
36. Transport-layer functions . 139
37. Network management and accounting functions . 139
38. Security functions . 139
39. Server applications not enabled for IPv6 . 140
40. Client applications not enabled for IPv6. 140
41. Command-type applications not enabled for IPv6 . 140

© Copyright IBM Corp. 2002, 2010 ix

||

||

x z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

About this document

This document contains information relating to the IPv6 protocol and the
implementation of the protocol on z/OS® Communications Server Version 1
Release 12.

Who should read this document
This information is intended for programmers and system administrators who are
familiar with the IPv6 protocol, TCP/IP, MVS™, and z/OS UNIX®.

How this document is organized
This document contains the following information:
v Chapter 1, “Internet Protocol Version 6,” on page 1 provides an introduction to

IPv6 for z/OS Communications Server Version 1 Release 12.
v Chapter 2, “IPv6 addressing,” on page 7 contains a discussion of the IPv6

addressing model and the different IPv6 address types.
v Chapter 3, “IPv6 protocol,” on page 19 provides a description of the z/OS

Communications Server Version 1 Release 12 implementation of the IPv6
protocol.

v Chapter 4, “Configuring support for z/OS,” on page 55 describes the IPv6
function provided in z/OS Communications Server Version 1 Release 12 and
how to enable it.

v Chapter 5, “Configuration guidelines,” on page 69 contains recommendations
and guidance information for implementing the IPv6 functions provided in
z/OS Communications Server Version 1 Release 12.

v Chapter 6, “API support,” on page 75 describes the various z/OS socket APIs
and the level of IPv6 present for each API.

v Chapter 7, “Basic socket API extensions for IPv6,” on page 79 describes basic
socket API changes that most applications use.

v Chapter 8, “Enabling an application for IPv6,” on page 95 describes common
issues and considerations involved in enabling existing IPv4 socket applications
for IPv6 communications.

v Chapter 9, “Advanced socket APIs,” on page 105
v Chapter 10, “Advanced concepts and topics,” on page 125
v Appendix A, “IPv6 support tables,” on page 135
v Appendix B, “Related protocol specifications,” on page 141 lists the related

protocol specifications for TCP/IP
v Appendix C, “Accessibility,” on page 165 describes accessibility features to help

users with physical disabilities.
v Notices contains notices and trademarks used in this document.
v “Bibliography” on page 177 contains descriptions of the documents in the z/OS

Communications Server library.

How to use this document
To use this document, you should be familiar with z/OS TCP/IP Services and the
TCP/IP suite of protocols.

© Copyright IBM Corp. 2002, 2010 xi

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For
a given publication, updates to the hardcopy and associated BookManager®

softcopy are usually available at the same time. Sometimes, however, the updates
to hardcopy and softcopy are available at different times. The following
information describes how to determine if you are looking at the most current
copy of a publication:
v At the end of a publication's order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the
publication's file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service

For immediate assistance, visit this Web site: http://www.software.ibm.com/
network/commserver/support/

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.
– 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or
your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating
your comments to IBM” on page 183.

Conventions and terminology that are used in this document

Commands in this book that can be used in both TSO and z/OS UNIX
environments use the following conventions:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).

xii z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/

v When referring to the command in a general way in text, the command is
presented with an initial capital letter (for example, Netstat).

All the exit routines described in this document are installation-wide exit routines.
The installation-wide exit routines also called installation-wide exits, exit routines,
and exits throughout this document.

The TPF logon manager, although included with VTAM®, is an application
program; therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

For definitions of the terms and abbreviations that are used in this document, you
can view the latest IBM terminology at the IBM Terminology Web site.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in “Bibliography” on
page 177, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and
UNIX System Services.

Softcopy information

Softcopy publications are available in the following collections.

Titles Order
Number

Description

z/OS V1R12 Collection SK3T-4269 This CD collection is shipped with the z/OS product. It includes the
libraries for z/OS V1R12, in both BookManager and PDF formats.

About this document xiii

http://www.ibm.com/software/globalization/terminology/index.jsp

Titles Order
Number

Description

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS V1R12 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in
both BookManager and PDF format. This collection combines
SK3T-4269 and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

IBM System z® Redbooks
Collection

SK3T-7876 The Redbooks® selected for this CD series are taken from the IBM
Redbooks inventory of over 800 books. All the Redbooks that are of
interest to the zSeries® platform professional are identified by their
authors and are included in this collection. The zSeries subject areas
range from e-business application development and enablement to
hardware, networking, Linux®, solutions, security, parallel sysplex,
and many others.

Other documents

For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA
documents.

The following table lists documents that might be helpful to readers.

Title Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006 ISBN 13: 978-0596100575

Routing in the Internet , Second Edition, Christian Huitema (Prentice Hall 1999) ISBN 13: 978-0130226471

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain
Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Services System SSL Programming SC24-5901

z/OS Integrated Security Services LDAP Server Administration and Use SC24-5923

z/OS JES2 Initialization and Tuning Guide SA22-7532

xiv z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

||

||

|
|
|

|
|
|

|
|
|

|
|
|

Title Number

z/OS Problem Management G325-2564

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS Program Directory GI10-0670

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services Planning GA22-7800

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803

z/OS UNIX System Services User's Guide SA22-7801

z/OS XL C/C++ Run-Time Library Reference SA22-7821

System z10, System z9 and zSeries OSA-Express Customer's Guide and Reference SA22-7935

Redbooks

The following Redbooks might help you as you implement z/OS Communications
Server.

Title Number

IBM z/OS V1R11 Communications Server TCP/IP Implementation, Volume 1: Base
Functions, Connectivity, and Routing

SG24-7798

IBM z/OS V1R11 Communications Server TCP/IP Implementation, Volume 2: Standard
Applications

SG24-7799

IBM z/OS V1R11 Communications Server TCP/IP Implementation, Volume 3: High
Availability, Scalability, and Performance

SG24-7800

IBM z/OS V1R11 Communications Server TCP/IP Implementation, Volume 4: Security
and Policy-Based Networking

SG24-7801

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390® TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay™ Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24–5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information
about z/OS technology

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

About this document xv

|
|
|

|
|
|

|
|
|

|
|
|

http://www.ibm.com/systems/z/os/zos/

Use this site to view and download z/OS Communications Server
documentation

www.ibm.com/systems/z/os/zos/bkserv/

IBM Communications Server product

The primary home page for information about z/OS Communications
Server

http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http://www.software.ibm.com/network/commserver/support/

IBM Communications Server performance information

This site contains links to the most recent Communications Server
performance reports.

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks, Redpapers, and Technotes

http://www.redbooks.ibm.com/

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

http://www.ibm.com/support/techdocs/atsmastr.nsf

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force Web site, with links to the RFC
repository and the IETF Working Groups Web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force Web site

http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

DNS Web sites

For more information about DNS, see the following USENET news groups and
mailing addresses:

xvi z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/support/docview.wss?uid=swg27005524
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
https://lists.isc.org/mailman/listinfo

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a Web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your Web browser to the
following Web site, which is available to all users (no login required):
http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this document or any
other z/OS Communications Server documentation, do one of the following:
v Go to the z/OS contact page at http://www.ibm.com/systems/z/os/zos/

webqs.html. You can enter and submit your comments in the form provided at
this Web site.

v Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the
name of the document, the part number of the document, the version of z/OS
Communications Server, and, if applicable, the specific location of the text that
you are commenting on (for example, a section number, a page number or a
table number).

About this document xvii

|

|

|

|
|

|

|

|
|

http://www.isc.org/ml-archives/
http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

xviii z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Summary of changes

Summary of changes
for SC31-8885-08
z/OS Version 1 Release 12

This document contains information previously presented in SC31-8885-07, which
supports z/OS Version 1 Release 11.

New information

v Enhancements to IPv6 router advertisement, see the following topics:
– “Router discovery” on page 21
– “Dynamic routing protocols” on page 22
– “Router advertisements” on page 27
– “Route information option for router advertisements” on page 28
– “Prefix information option for router advertisements” on page 29

v Configurable default address selection policy table, see the following topics:
– “Policy table for IPv6 default address selection” on page 40
– “Default destination address selection” on page 41
– “Default source address selection” on page 43
– “Configuring the policy table for default address selection” on page 45
– “Displaying the policy table for default address selection” on page 46

v Resolver support for IPv6 connections to DNS name servers, see “Resolver
communications with the Domain Name System” on page 63.

v Socket API support for source address selection, see “Socket options to support
IPv6” on page 89.

This information contains terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

You might notice changes in the style and structure of some content–for example,
headings that use uppercase for the first letter of initial words only, and
procedures that have a different look and format. The changes are ongoing
improvements to the consistency and retrievability of information in our
documents.

Summary of changes
for SC31-8885-07
z/OS Version 1 Release 11

This document contains information previously presented in SC31-8885-06, which
supports z/OS Version 1 Release 10.

New information

v IPv6 stateless address autoconfiguration enhancements, see “IPv6 temporary
addresses with random interface IDs” on page 37.

Deleted information

© Copyright IBM Corp. 2002, 2010 xix

v Support for NDB, the DHCP server, BINL, and BIND 4.9.3 is removed from the
z/OS V1R12 Communications Server product; information describing this
support has been deleted.

v The IPv6 type 0 route header has been deprecated; information describing this
support has been deleted.

This information contains terminology, maintenance, and editorial changes.

Summary of changes
for SC31-8885-06
z/OS Version 1 Release 10

This document contains information previously presented in SC31-8885-05, which
supports z/OS Version 1 Release 9.

New information

v DNS and resolver enhancements, see “Resolver communications with the
Domain Name System” on page 63.

This information contains terminology, maintenance, and editorial changes.

xx z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 1. Internet Protocol Version 6

Internet Protocol Version 6 (IPv6) is the next generation of the Internet protocol
designed to replace the current version, Internet Protocol Version 4 (IPv4). Most of
today's internets use IPv4, for which there is a growing shortage of addresses. In
theory, 32 bits provide over 4 billion nodes, each with a globally unique address. In
practice, the interaction between routing and addressing makes it impossible to
exploit more than a small fraction of that number of nodes. Consequently, there is
a growing concern that the continued growth of the Internet might lead to the
exhaustion of IPv4 addresses early in the 21st century.

IPv6 fixes a number of problems in IPv4, such as the limited number of available
IPv4 addresses. IPv6 uses 128-bit addresses, an address space large enough to last
for the foreseeable future. It also adds many improvements to IPv4 in areas such as
routing and network autoconfiguration. IPv6 is expected to gradually replace IPv4,
with the two coexisting for a number of years during a transition period.

IPv6 is an evolutionary step from IPv4. Functions that work well in IPv4 have been
kept in IPv6, and functions that did not work well in IPv4 have been removed.

z/OS Communications Server Version 1 Release 4 was the first release to
incorporate IPv6 features. z/OS Communications Server enables you to do the
following:
v Build an IPv6 network
v Start using IPv6-enabled applications
v Enable existing IPv4 applications to be IPv6 applications
v Access your SNA applications over an IPv6 network

Not all IPv6 features are supported by z/OS. This information describes the
support available and how to implement it.

IPv6 provides the following advantages.

Expanded routing and addressing

IPv6 uses a 128-bit address space, which has no practical limit on global
addressability and provides 3.4 × 1050 unique addresses. This provides enough
addresses so that every person could have a single IPv6 network with many nodes,
and still the address space would be almost completely unused.

The greater availability of IPv6 addresses eliminates the need for private address
spaces, which in turn eliminates one of the needs for network address translators
(NATs) to be used between the private Intranet and the public Internet.

Hierarchical addressing and routing infrastructure

The use of hierarchical address formats is equally important as the expanded
address space. The IPv4 addressing hierarchy includes network, subnet, and host
components in an IPv4 address. With its 128-bit addresses, IPv6 provides globally
unique and hierarchical addressing based on prefixes rather than address classes,
which keeps routing tables small and backbone routing efficient.

© Copyright IBM Corp. 2002, 2010 1

The general format is shown in the following figure:

The global routing prefix is a value (typically hierarchically structured) assigned to
a site; the subnet ID is an identifier of a link within the site; and the interface ID is
a unique identifier for a network device on a given link (usually automatically
assigned).

Simplified IP header format

The IPv6 header has a fixed size and its format is more simplified than the IPv4
header. Some fields in the IPv4 header were dropped in IPv6 or moved to optional
IPv6 extension headers to reduce the common-case processing cost of packet
handling, as well as keep the bandwidth cost of the IPv6 header as low as possible
despite increasing the size of addresses. While the IPv6 address is four times the
size of the IPv4 address, the total IPv6 header size is only twice as large as the
IPv4 header size.

Improved support for options

Changes in the way IP header options are encoded allows for more efficient
forwarding, less stringent limits on the length of options, and greater flexibility for
introducing new options in the future. Optional IPv6 header information is
conveyed in independent extension headers located after the IPv6 header and
before the transport-layer header in each packet. In contrast to IPv4, most IPv6
extension headers are not examined or processed by intermediate nodes.

Address autoconfiguration

IPv6 provides for both stateless and stateful autoconfiguration. Stateless
autoconfiguration allows a node to be configured in the absence of any
configuration server. Stateless autoconfiguration also makes it possible for a node
to configure its own globally routable addresses in cooperation with a local IPv6
router, by combining the 48- or 64-bit MAC address of the adapter with network
prefixes that are learned from the neighboring router.

IPv6 allows the use of DHCPv6 for stateful autoconfiguration. DHCPv6 relies on a
configuration server that maintains static tables to determine the addresses that are
assigned to newly connected nodes. z/OS Communications Server does not
support DHCPv6.

Tip: You can manually configure addresses in environments in which complete
local control is required (as with VIPA or additional LOOPBACK addresses).

n bits m bits 128-(n+m)bits

interface IDglobal routing prefix subnet ID

Figure 1. IPv6 address space

2 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Dual-mode stack support

z/OS Communications Server can be an IPv4-only stack or a dual-mode stack.
Dual-mode stack refers to a single TCP/IP stack supporting both IPv4 and IPv6
protocols at the same time.

Restriction: IPv6-only stacks are not supported.

Running in a dual-mode stack configuration provides the following advantages:
v IPv4 and IPv6 applications can coexist on a single dual-mode stack.
v Unmodified applications can continue to send data over an IPv4 network.
v A single IPv6-enabled application can communicate using IPv4 and IPv6.
v IPv4 and IPv6 can coexist in the same devices and networks.

Neighbor discovery

Neighbor discovery (ND) corresponds to a combination of the IPv4 protocols ARP,
ICMP Router Discovery, and ICMP Redirect. Nodes (hosts and routers) use ND to
determine the link-layer addresses for neighbors known to reside on attached links
and to quickly purge cached values that become invalid. Hosts also use ND to find
neighboring routers that are able to forward packets on their behalf. ND also
defines a Neighbor Unreachability Detection algorithm. IPv4 does not contain a
generally agreed upon protocol for performing Neighbor Unreachability Detection,
although Dead Gateway Detection does address a subset of the problems that
Neighbor Unreachability Detection solves.

Neighbor Discovery is used to do the following:
v Obtain configuration information including:

Router Discovery
Defines how hosts can automatically locate routers that reside on an
attached link.

Prefix Discovery
Specifies how hosts discover the set of prefixes that are defined as being
on-link (IPv6 address prefixes that reside on the shared link, such as an
ethernet link), as well as those which are to be used when implementing
Stateless Address Autoconfiguration.

Parameter Discovery
Allows a host to learn link parameters, such as the link MTU, and IP
parameters, such as the hop limit to place in outgoing packets.

v Perform address resolution. Address resolution allows a node to determine the
link-layer address of an on-link destination given the destination's IP address.

v Dynamically learn routes which can be used in next-hop determination. This
specifies the algorithm for mapping the IP destination address into the IP
address of the neighbor to which traffic should be sent. The next-hop can be
either a router or the destination itself. Next-hop determination uses the on-link
prefixes learned as part of Prefix Discovery to determine when the next hop is
the destination itself.

v Determine when a neighbor is no longer reachable using Neighbor
Unreachability Detection.

v Process Redirect messages. Routers use Redirect messages to notify a node that a
better next-hop node should be used when forwarding packets to a particular

Chapter 1. Internet Protocol Version 6 3

destination. The new next-hop could be the actual destination, if the destination
is on-link, or a different router, if the destination is off-link.

Comparison of IPv6 and IPv4 characteristics
There are major differences between IPv4 and IPv6. Table 1 lists these differences.

Table 1. Comparison of IPv4 and IPv6

IPv4 IPv6

Source and destination addresses are 32 bits
(4 bytes) in length.

Source and destination addresses are 128
bits (16 bytes) in length. For more
information, see Chapter 2, “IPv6
addressing,” on page 7.

Uses broadcast addresses to send traffic to
all nodes on a subnet.

There are no IPv6 broadcast addresses.
Instead, multicast scoped addresses are
used. For more information, see “Multicast
scope” on page 15.

Fragmentation is supported at originating
hosts and intermediate routers.

Fragmentation is not supported at routers. It
is only supported at the originating host. For
more information, see “Fragmentation in an
IPv6 network” on page 20.

IP header includes a checksum. IP header does not include a checksum.

IP header includes options. All optional data is moved to IPv6 extension
headers. For more information, see
“Extension headers” on page 19.

IPSec support is optional. IPSec support is required in a full IPv6
implementation.

No identification of payload for QoS
handling by routers is present within the
IPv4 header.

Payload identification for QoS handling by
routers is included in the IPv6 header using
the Flow Label field. For more information,
see “Option to provide QoS classification
data” on page 117.

ICMP Router Discovery is used to determine
the IPv4 address of the best default gateway
and is optional.

Uses ICMPv6 Router Solicitation and Router
Advertisement to determine the IPv6
address of the best default gateway and is a
required function. For more information, see
“Router advertisements” on page 27. z/OS
sends router solicitations and processes
router advertisements but does not send
router advertisements.

Address Resolution Protocol (ARP) uses
broadcast ARP Request frames to resolve an
IPv4 address to a link layer address.

Uses multicast Neighbor Solicitation
messages for address resolution. For more
information, see “Address resolution” on
page 33.

Internet Group Management Protocol
(IGMP) is used to manage local subnet
group membership.

Uses Multicast Listener Discovery (MLD)
messages to manage local subnet group
membership. For more information, see
“Multicast Listener Discovery” on page 26.

Addresses must be configured either
manually or through DHCP. (DHCP is not
supported in z/OS Communications Server.)

Addresses can be automatically assigned
using stateless address autoconfiguration,
assigned using DHCPv6, or manually
configured. (DHCPv6 is not supported in
z/OS Communications Server.)

4 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|

|
|
|
|
|

Table 1. Comparison of IPv4 and IPv6 (continued)

IPv4 IPv6

Uses host address (A) resource records in
the Domain Name System (DNS) to map
host names to IPv4 addresses.

Uses host address (AAAA) resource records
in the Domain Name System (DNS) to map
host names to IPv6 addresses.

Uses pointer (PTR) resource records in the
IN-ADDR.ARPA DNS domain to map IPv4
addresses to host names.

Uses pointer (PTR) resource records in the
IP6.ARPA or IP6.INT DNS domain to map
IPv6 addresses to host names.

For QoS, IPv4 supports both differentiated
and integrated services.

Differentiated and integrated services are
both supported. In addition, IPv6 provides a
flow label that can be used for more
granular treatment of packets.

Chapter 1. Internet Protocol Version 6 5

6 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 2. IPv6 addressing

This topic contains the following topics:
v “Textual representation of IPv6 addresses”
v “Textual representation of IPv6 prefixes” on page 8
v “IPv6 address space” on page 9
v “IPv6 addressing model” on page 9
v “Scope zones” on page 9
v “Categories of IPv6 addresses” on page 10
v “Typical IPv6 addresses assigned to a node” on page 17
v “IPv6 address states” on page 17

Textual representation of IPv6 addresses
IPv4 addresses are represented in dotted-decimal format. The 32-bit address is
divided along 8-bit boundaries. Each set of 8 bits is converted to its decimal
equivalent and separated by periods. In contrast, IPv6 addresses are 128 bits
divided along 16-bit boundaries. Each 16-bit block is converted to a 4-digit
hexadecimal number and separated by colons. The resulting representation is
called colon-hexadecimal.

The following are the three conventional forms for representing IPv6 addresses as
text strings:
v The preferred form is x:x:x:x:x:x:x:x, where the x's are the hexadecimal values of

the eight 16-bit pieces of the address. For example:
2001:DB8:7654:3210:FEDC:BA98:7654:3210

2001:DB8:0:0:8:800:200C:417A

Guideline: You do not need to write the leading zeros in an individual field,
but there must be at least one numeral in every field (except for the
case described in the following item).

v As a result of some methods of allocating certain styles of IPv6 addresses,
sometimes addresses contain long strings of zero bits. To make writing addresses
containing zero bits easier, a special syntax is available to compress the zeros. A
double colon (::) indicates multiple groups of 16 bits of zeros and can appear
only once in an address. The double colon can also be used to compress both
leading and trailing zeros in an address.
For example the following addresses:

Table 2. Address types

Address type Long form Compressed form

Unicast 2001:DB8:0:0:8:800:200C:417A 2001:DB8::8:800:200C:417A

Multicast FF01:0:0:0:0:0:0:101 FF01::101

Loopback 0:0:0:0:0:0:0:1 ::1

Unspecified 0:0:0:0:0:0:0:0 ::

v An alternative form that is sometimes more convenient when dealing with a
mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the x's
are the hexadecimal values of the 6 high-order 16-bit pieces of the address, and

© Copyright IBM Corp. 2002, 2010 7

the d's are the decimal values of the 4 low-order 8-bit pieces of the address
(standard IPv4 representation). This is used for IPv4-compatible IPv6 addresses
and IPv4-mapped IPv6 addresses. These types of addresses are used to hold
embedded IPv4 addresses in order to carry IPv6 packets over IPv4 routing
infrastructure. The address can be expressed in the following manner:
0:0:0:0:0:0:13.1.68.3
0:0:0:0:0:FFFF:129.144.52.38

The address can also be expressed in compressed form:
::13.1.68.3
::FFFF:129.144.52.38

Textual representation of IPv6 prefixes
The text representation of IPv6 address prefixes is similar to the way IPv4 address
prefixes are written in Classless Inter-Domain Routing (CIDR) notation. An IPv6
address prefix is represented by the notation ipv6-address/prefix-length where:

ipv6-address
An IPv6 address in any of the notations listed above.

prefix-length
A decimal value specifying how many of the leftmost contiguous bits of
the address comprise the prefix.

For example, the following are legal representations of the 60-bit prefix
20010DB80000CD3 (hexadecimal):
2001:DB8:0000:CD30:0000:0000:0000:0000/60
2001:DB8::CD30:0:0:0:0/60
2001:DB8:0:CD30::/60

The following are not legal representations of the preceding prefix:
v 2001:DB8:0:CD3/60

Leading zeros might be dropped, but not trailing zeros, within any 16-bit chunk
of the address.

v 2001:DB8::CD30/60
Address to the left of the forward slash (/) expands to
2001:DB8:0000:0000:0000:0000:0000:CD30.

v 2001:DB8:0:CD3/60
Address to the left of the forward slash (/) expands to
2001:DB8:0000:0000:0000:0000:0000:0CD3.

When writing both a node address and a prefix of that node address (for example,
the node's subnet prefix), the two can be combined as in the following examples:
v Node address - 2001:DB8:0:CD30:123:4567:89AB:CDEF
v Subnet number - 2001:DB8:0:CD30::/60
v Combination of node address and subnet number -

2001:DB8:0:CD30:123:4567:89AB:CDEF/60

8 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

IPv6 address space

The type of a IPv6 address is identified by the high-order bits of the address as
shown in Table 3.

Table 3. Address type representation

Address type Binary prefix IPv6 notation

Unspecified 00...0 (128 bits) ::/128

Loopback 00...1 (128 bits) ::1/128

Unique local unicast 1111110 FC00::/7

Multicast 11111111 FF00::/8

Link-local unicast 1111111010 FE80::/10

Unassigned (formerly
site-local unicast)

1111111011 FEC0::/10

Global unicast aggregatable (everything else)

Anycast addresses are taken from the unicast address spaces (of any scope) and are
not syntactically distinguishable from unicast addresses. Anycast is described as a
cross between unicast and multicast. Like multicast, multiple nodes might be
listening on an Anycast address. Like unicast, a packet sent to an Anycast address
is delivered to one (and only one) of those nodes. The exact node to which it is
delivered is based on the IP routing tables in the network.

For more information about different IPv6 addresses, see “Categories of IPv6
addresses” on page 10.

IPv6 addressing model
IPv6 unicast addresses of all types (excluding loopback and unspecified) can be
assigned to a node's interfaces.

All physical interfaces (excluding VIPA and loopback) are required to have at least
one link-local unicast address. z/OS Communications Server only allows a single
link-local address per interface. Other platforms might have more than one. A
single interface can be assigned multiple unicast or anycast IPv6 addresses.
Multiple IPv6 multicast groups of any scope can be joined on a single interface. A
unicast address or a set of unicast addresses might be assigned to multiple
physical interfaces if the implementation treats the multiple physical interfaces as
one interface when presenting it to the Internet layer.

Currently, IPv6 continues the IPv4 model that a subnet prefix is associated with
one link. Multiple subnet prefixes can be assigned to the same link.

Scope zones
Each IPv6 address has a specific scope in which it is defined. A scope is a
topological area within which the IPv6 address can be used as a unique identifier
for an interface or a set of interfaces. The scope for an IPv6 address is encoded as
part of the address itself. A unicast address can have a link-local or global scope. A
multicast address supports the following:
v Interface-local
v Link-local

Chapter 2. IPv6 addressing 9

v Subnet-local
v Admin-local
v Site-local (this type of address has been deprecated)
v Organization-local
v Global scopes

See “Unicast IPv6 addresses” on page 11 and “Multicast IPv6 Addresses” on page
14 for more discussions about unicast and multicast scopes.

A scope zone is an instance of a given scope. For instance, a link and all directly
attached interfaces comprise a single link-local scope zone. A scope zone has the
following properties:
v A scope zone is comprised of a contiguous set of interfaces and the links to

which the interfaces are attached.
v An interface can belong to only one scope zone of each possible scope.
v A node can be connected to more than one scope zone of a given scope. For

instance, a node can be connected to multiple link-local scope zones if it is
attached to more than one LAN.

v The scope zone for an IPv6 address is not encoded within the address itself, but
is instead determined by the interface over which the packet is sent or received.

v There is a single scope zone for IPv6 addresses of global scope which comprises
all interfaces and links in the Internet.

v Packets that contain a source or destination address of a given scope can be
routed only within the same scope zone, and cannot be routed between different
scope zone instances.

v Addresses of a given scope can be reused in different scope zones.
v Scope zones associated with the inbound and intended outbound interfaces are

compared to determine whether packets containing a limited scope address (for
example, an address of scope other than global) can be successfully routed.

v Scope zone representations (zone indices) are valid only on the node where they
are defined. The same zone can have separate representations in each node that
belongs to that zone.

To identify a specific instance of a scope zone, a node assigns a unique scope zone
index to each scope zone of the same scope to which it is attached.

Categories of IPv6 addresses

An IPv6 address is identified by the high-order bits of the address. The following
categories of IP addresses are supported in IPv6:

Unicast
An identifier for a single interface. A packet sent to a unicast address is
delivered to the interface identified by that address. It can be link-local
scope, site-local scope, or global scope.

Guideline: Do not use site-local addresses.

Multicast
An identifier for a group of interfaces (typically belonging to different
nodes). A packet sent to a multicast address is delivered to all interfaces
identified by that address.

10 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Anycast
An identifier for a group of interfaces (typically belonging to different
nodes). A packet sent to an anycast address is delivered to the closest
member of a group, according to the routing protocols' measure of
distance.

Restriction: Although z/OS Communications Server can send or forward
datagrams to an anycast address, z/OS Communications
Server does not support functioning as an anycast endpoint.

There are no broadcast addresses in IPv6. Multicast addresses have superseded this
function.

Unicast IPv6 addresses
IPv6 unicast addresses can be aggregated with prefixes of arbitrary bit-length
similar to IPv4 addresses under Classless Inter-Domain Routing (CIDR).

There are several types of unicast addresses in IPv6:
v Global unicast
v Site-local unicast (this type of unicast address has been deprecated)

Restriction: Although z/OS Communications Server can send or forward
datagrams to an anycast address, z/OS Communications Server
does not support functioning as an anycast endpoint.

v Link-local unicast

There are also some special-purpose subtypes of global unicast:
v IPv6 addresses with embedded IPv4 addresses

Additional address types or subtypes can be defined in the future.

A unicast address has the following format:

Aggregatable global addresses
Aggregatable global unicast addresses are equivalent to public IPv4 addresses.
They are globally routable and reachable on the IPv6 portion of the Internet.

A global unicast address has the following format:

Global routing prefix
Used to identify a specific customer site. The size of the field is 48 bits and
allows an ISP to create multiple levels of addressing hierarchy within the
network to both organize addressing and routing for downstream ISPs and
identify sites.

n bits 128-n bits

interface IDnetwork prefix

Figure 2. Unicast address format

Chapter 2. IPv6 addressing 11

Subnet ID
Used by an individual organization to identify subnets within its site. The
organization can use these 16 bits to create 65 536 subnets or multiple
levels of addressing hierarchy.

Interface ID
Indicates the interface on a specific subnet. The size of this field is 64 bits.

Local-use addresses
There are two types of local-use unicast addresses defined:
v Link-local
v Site-local (this type of unicast address has been deprecated)

Note: Site-local addresses were designed to use private address prefixes that
could be used within a site without the need for a global prefix. The IETF
has deprecated the special treatment given to the site-local prefix due to
numerous problems in the actual use and deployment of site-local
addresses. An IPv6 address constructed using a site-local prefix is now
treated as a global unicast address. The site-local prefix can be reassigned
for other use by future IETF standards action.

The link-local address is for use on a single link. Link-local addresses have the
following format:

Restriction: A link-local address is required on each physical interface.

Link-local addresses are designed to be used for addressing on a single link for
purposes such as automatic address configuration, neighbor discovery, or in the
absence of routers. It also can be used to communicate with other nodes on the
same link. A link-local address is automatically assigned.

Routers do not forward any packets with link-local source or destination addresses
to other links.

64 bits3 bits 45 bits 16 bits

interface ID001 global routing prefix subnet ID

Figure 3. Global unicast address format

10 bits 54 bits 64 bits

interface ID1111111010 0

Figure 4. Link-local address format

12 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Loopback address
The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It cannot be
assigned to any physical interface. It can be thought of as a link-local unicast
address assigned to a virtual interface (typically called the loopback interface) that
allows local applications to send messages to each other.

Restriction: The loopback address cannot be used as the source address in IPv6
packets that are sent outside of a node. An IPv6 packet with a
destination address of loopback cannot be sent outside of a node and
be forwarded by an IPv6 router. A packet received on an interface
with destination address of loopback is dropped.

Unspecified address
The address 0:0:0:0:0:0:0:0 is called the unspecified address. It is not assigned to
any node. It indicates the absence of an address. One example of its use is in the
Source Address field of any IPv6 packets sent by an initializing host before it has
learned its own address.

Restriction: The unspecified address cannot be used as the destination address of
IPv6 packets or in IPv6 routing headers. An IPv6 packet with a source
address of unspecified cannot be forwarded by an IPv6 router.

IPv4-mapped IPv6 addresses
These addresses hold an embedded global IPv4 address. They are used to
represent the addresses of IPv4 nodes as IPv6 addresses to applications that are
enabled for IPv6 and are using AF_INET6 sockets. This allows IPv6-enabled
applications to always deal with IP addresses in IPv6 format regardless of whether
the TCP/IP communications are occurring over IPv4 or IPv6 networks. The
dual-mode TCP/IP stack performs the transformation of the IPv4-mapped
addresses to and from native IPv4 format. IPv4-mapped addresses have the
following format:

For example:
::FFFF:129.144.52.38

IPv6 interface identifiers
Interface identifiers in IPv6 unicast addresses are used to identify interfaces on a
link. They are required to be unique on that link. In some cases, an interface's
identifier is derived directly from that interface's link-layer address. z/OS
Communications Server does not allow two links to have the same local address.
Some implementations might allow the same interface identifier to be used on
multiple interfaces on a single node, as long as they are attached to different links.

80 bits 16 32 bits

IPv4 address0000 0000 FFFF

Figure 5. IPv4-mapped IPv6 address

Chapter 2. IPv6 addressing 13

z/OS Communications Server allows the interface identifier to be generated (the
default) or manually configured. When the interface ID is generated, then z/OS
builds the interface ID when the interface becomes active based on the interface
type as follows:
v OSA-Express QDIO

1. OSA-Express returns the MAC address and a unique instance value during
the start of an interface.

2. z/OS builds the interface identifier by inserting the unique instance value
into the middle of the MAC address. This ensures that when multiple stacks
share an OSA, each stack gets a unique interface ID. If a virtual MAC
address is configured for this interface, then z/OS instead inserts the value
'FFFE'x into the middle of the MAC address.

v HiperSockets™

For HiperSockets interfaces, the interface ID generation works the same as for
OSA-Express QDIO except that the HiperSockets device returns a 48-bit value
that is unique for the HiperSockets CHPID rather than a MAC address. This
ensures that when multiple stacks share a HiperSockets CHPID, each stack gets
a unique interface ID.

v MPCPTP6
For MPCPTP6 interfaces, z/OS randomly generates an interface ID.

A node can choose to use a different algorithm available for generation of interface
identifiers for IPv6 addresses on a different platform.

Randomly generated temporary IPv6 interface identifiers

In addition to the interface identifier that is derived directly from the link-layer
address of the interface or that is manually configured, z/OS can also generate a
random interface identifier for OSA-Express QDIO interfaces. The random interface
identifier is used to generate temporary IPv6 addresses. A randomly generated
interface identifier is regenerated after a specified time interval. See “IPv6
temporary addresses with random interface IDs” on page 37 for more information.

Multicast IPv6 Addresses
An IPv6 multicast address is an identifier for a group of interfaces (typically on
different nodes). It is identified with a prefix of 11111111 or FF in hexadecimal
notation. It provides a way of sending packets to multiple destinations. An
interface can belong to any number of multicast groups.

Multicast address format
Binary 11111111 at the start of the address identifies the address as being a
multicast address. Multicast addresses have the following format:

24bits 16bits 24bits

MAC addr (bytes 1-3) instance value MAC addr (bytes 4-6)

Figure 6. OSA-Express QDIO interface ID format

14 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

flgs is a set of 4 flags:

v The 3 high-order flags are reserved, and must be initialized to 0.
v T = 0 indicates a permanently-assigned (well-known) multicast address, assigned

by the Internet Assigned Number Authority (IANA).
v T = 1 indicates a non-permanently assigned (transient) multicast address.

Scope is a 4-bit multicast scope value used to limit the scope of the multicast
group. Group ID identifies the multicast group, either permanent or transient,
within the given scope.

Multicast scope
The scope field indicates the scope of the IPv6 internetwork for which the
multicast traffic is intended. The size of this field is 4 bits. In addition to
information provided by multicast routing protocols, routers use multicast scope to
determine whether multicast traffic can be forwarded. For multicast addresses
there are 14 possible scopes (some are still unassigned), ranging from
interface-local to global (including both link-local and site-local).

Table 4 lists the defined values for the scope field:

Table 4. Multicast scope field values

Value Scope

0 Reserved

1 Interface-local scope (same node)

2 Link-local scope (same link)

3 Subnet-local scope

4 Admin-local scope

5 Site-local scope (same site)

8 Organization-local scope

E Global scope

F Reserved

Note: All other scope field values are currently undefined.

For example, traffic with the multicast address of FF02::2 has a link-local scope. An
IPv6 router never forwards this type of traffic beyond the local link.

112 bits8 4 4

group ID11111111 flgs scope

Figure 7. Multicast address format

0 0 0 T

Figure 8. Flags in multicast address

Chapter 2. IPv6 addressing 15

Interface-local
The interface-local scope spans a single interface only. A multicast address
of interface-local scope is useful only for loopback delivery of multicasts
within a node, for example, as a form of interprocess communication
within a computer. Unlike the unicast loopback address, interface-local
multicast addresses can be joined on any interface.

Link-local
Link-local addresses are used by nodes when communicating with
neighboring nodes on the same link. The scope of the link-local address is
the local link.

Subnet-local
Subnet-local scope is given a different and larger value than link-local to
enable possible support for subnets that span multiple links.

Admin-local
Admin-local scope is the smallest scope that must be administratively
configured, that is, not automatically derived from physical connectivity or
other, non-multicast-related configuration.

Site-local
The scope of a site-local address is the site or organization internetwork.
Addresses must remain within their scope. A router must not forward
packets outside of its scope.

Guideline: Site-local has been deprecated.

Organization-local
This scope is intended to span multiple sites belonging to a single
organization.

Global
Global scope is used for uniquely identifying interfaces anywhere in the
Internet.

Multicast groups
Group ID identifies the multicast group, either permanent or transient, within the
given scope. The size of this field is 112 bits. Permanently assigned groups can use
the group ID with any scope value and still refer to the same group. Transient
assigned groups can use the group ID in different scopes to refer to different
groups. Multicast addresses from FF01:: through FF0F:: are reserved, well-known
addresses. Use of these group IDs for any other scope values, with the T flag equal
to 0, is not allowed.

All-nodes multicast groups: These groups identify all IPv6 nodes within a given
scope. Defined groups include the following:
v Interface-local all-nodes group (FF01::1)
v Link-local all-nodes group (FF02::1)

All-routers multicast groups: These groups identify all IPv6 routers within a
given scope. Defined groups include the following:
v Interface-local all-routers group (FF01::2)
v Link-local all-routers group (FF02::2)
v Site-local all-routers group (FF05::2)

16 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Solicited-node multicast group: For each unicast address which is assigned to an
interface, the associated solicited-node multicast group is joined on that interface.
The solicited-node multicast address facilitates the efficient querying of network
nodes during address resolution.

Anycast IPv6 addresses
An IPv6 anycast address is an identifier for a set of interfaces (typically belonging
to different nodes). A packet sent to an anycast address is delivered to one of the
interfaces identified by that address (the nearest interface), according to the routing
protocols' measure of distance. It uses the same formats as a unicast address, so
one cannot differentiate between a unicast and an anycast address simply by
examining the address. Instead, anycast addresses are defined administratively.

Typical IPv6 addresses assigned to a node
An IPv6 host is required to recognize the following addresses as identifying itself:
v Link-local address for each active IPv6 physical interface (cannot be manually

defined)
v Assigned unicast addresses (autoconfigured or manually defined)
v IPv6 loopback address (::1)
v All-nodes multicast address (interface-local and link-local)
v Solicited node multicast addresses for each of its assigned unicast and anycast

addresses
v Multicast addresses of all other groups to which the host belongs

IPv6 address states
An address state defines and controls how other algorithms work with a particular
address. There are four IPv6 address states: Tentative, deprecated, preferred, and
unavailable.

Tentative

An address whose uniqueness on a link is being verified, prior to its assignment to
an interface. A tentative address is not considered assigned to an interface in the
usual sense. An interface discards received packets addressed to a tentative
address, unless those packets are related to Duplicate Address Detection (DAD).
For more information about DAD, see “Duplicate address detection” on page 32.

Deprecated

An address assigned to an interface whose use is discouraged, but not forbidden.
Packets sent from or to deprecated addresses are delivered as expected. A
deprecated address continues to be used as a source address in existing
communications where switching to a preferred address would be disruptive.

Preferred

An address assigned to an interface whose use is unrestricted. Preferred addresses
can be used as the source or destination address of packets sent from or to the
interface, respectively.

Chapter 2. IPv6 addressing 17

Unavailable

An unavailable address is one that is not yet assigned to the interface.

18 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 3. IPv6 protocol

This topic describes the IPv6 protocol implementation and contains the following
topics:
v “Extension headers”
v “Fragmentation in an IPv6 network” on page 20
v “Path MTU discovery” on page 20
v “IPv6 routing” on page 20
v “ICMPv6” on page 25
v “Multicast Listener Discovery” on page 26
v “Neighbor discovery” on page 27
v “Assigning IP addresses to interfaces” on page 34
v “IPv6 temporary addresses with random interface IDs” on page 37
v “Default address selection” on page 40
v “Enabling IPv6 communication between IPv6 nodes or networks in an IPv4

environment” on page 46
v “Enabling end-to-end communication between IPv4 and IPv6 applications” on

page 47
v “Considerations for configuring z/OS for IPv6” on page 50
v “INET considerations” on page 51
v “Common INET considerations” on page 52

Guideline: You should be familiar with the IPv6 protocol in general.

Extension headers
In IPv6, IP-layer options within a packet are encapsulated in independent headers
called extension headers. In contrast, IPv4 options are contained in the IP header
itself.

Restriction: Not all IPv6 extension headers are supported in z/OS
Communications Server. The z/OS TCP/IP stack supports receipt of
the following extension headers:
v Routing
v Fragmentation
v Hop-by-hop option
v Destination option
v Authentication (AH)
v Encapsulating Security Payload (ESP)

© Copyright IBM Corp. 2002, 2010 19

|

Fragmentation in an IPv6 network
Fragmentation is used by a source to send a packet larger than would fit in the
path MTU to its destination. In order to send packets larger than the link
minimum of 1280 bytes, a node must support determination of the minimum
supported MTU along the path between the source and destination. This is
accomplished by Path MTU discovery. For more information about path discovery,
see “Path MTU discovery.”

The IPv6 IP header does not contain information about fragments. The
fragmentation extension header carries this information. z/OS Communications
Server allows for 2048 active IPv6 reassemblies in progress at any given time. z/OS
Communications Server reassembly timeout for IPv6 reassemblies is 60 seconds.
These two values are not configurable.

Fragmentation and UDP/RAW
Intermediate routers cannot fragment packets and UDP/RAW transports do not
perform retransmission. To attempt to ensure that a UDP/RAW packet is not
dropped due to fragmentation, one of the following conditions can occur:
v z/OS Communications Server always sends the packet using the minimum MTU

(1280) unless the MTU for the destination is learned from an ICMPv6 Packet Too
Big message.

v An application sends a packet using the IPV6_DONTFRAG socket option.

For example, a situation can occur where the MTU was learned by way of Path
MTU discovery. In that case, the network topology changes, reducing the MTU to
this particular destination. UDP/RAW sends with the original learned MTU and
receives a Packet Too Big message. In this case, the packet is dropped, but
subsequent sends learn the changed MTU and send with the appropriate size.

Path MTU discovery
When one IPv6 node has a large amount of data to send to another node, the data
is transmitted in a series of IPv6 packets. It is preferable that these packets be of
the largest size that can successfully traverse the path from the source node to the
destination node. This packet size is referred to as the Path MTU (PMTU), and it is
equal to the minimum link MTU of all the links in a path. IPv6 provides PMTU
discovery as a standard mechanism for a node to discover the PMTU of an
arbitrary path.

For IPv6, intermediate routers cannot fragment packets. An implementation must
either support path MTU discovery or send using IPv6 minimum link MTU. z/OS
Communications Server supports path MTU discovery.

Path MTU discovery supports multicast as well as unicast destinations. When
PMTU information is learned, it is cached for a period of time and then deleted in
order to learn of increases in the MTU value.

IPv6 routing
Both replaceable and non-replaceable IPv6 static routes are supported by using
BEGINROUTES profile statements.

Restrictions:

20 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

v The GATEWAY statement in the TCP/IP profile does not support
IPv6 static routes.

v Policy-based routing is not supported for IPv6 traffic.

Dynamic routes for IPv6 are learned in the following ways:
v By router discovery
v From packets that are redirected by ICMPv6
v From dynamic routing protocols

Replaceable static routes can be replaced by dynamic routes. If a replaceable static
route is replaced by a dynamic route, and that dynamic route is later deleted, the
replaceable static route is re-added.

Router discovery
Hosts can learn the network prefixes for all directly attached links from the router
advertisements received from their routers. To determine whether another host is
on a directly attached link or on a remote link, determine whether that host's IPv6
address is constructed from a network prefix of one of the directly attached links.
If it is on a directly attached link, data can be sent directly to that host without
going through a router; otherwise, data must be sent through a router using a
default route or an indirect prefix route that can also be learned from router
advertisements.

Router advertisements are not a replacement for dynamic routing protocols such as
IPv6 OSPF and IPv6 RIP. If a host is not using a dynamic routing protocol, some
limitations apply.

If the host has multiple interfaces attached to more than one link, the host must
decide which interface to use when sending a packet to a host on a remote link. If
there are multiple routers on the link attached to the interface, the host must
decide to which router it should send the packet. To make these decisions, the host
needs a route in its routing table. When both of the following criteria are true, only
default routes are available for accessing a host on a remote link:
v Neither the IPv6 OSPF nor the IPv6 RIP dynamic routing protocol of

OMPROUTE is being used.
v Adjacent routers are not including indirect prefix routes (using the Route

Information option as described in RFC 4191) in their router advertisement
messages.

When there are multiple default routers on the same physical link, the host might
select a router that is not optimal. This selection might not be a serious problem,
because that router can send an ICMP Redirect, which indicates that future packets
should be sent to the optimal router. However, if the default routers are on
multiple physical links, the results might be more serious. A router on one link is
not able to redirect the host to use a different physical link. If the selected router
cannot reach the destination, attempts to send data fail, even if the destination
could be reached by a default router on another physical link. To resolve these
limitations when you are not using a dynamic routing protocol, static routes might
be needed to direct the traffic over the best interface and using the appropriate
router.

If a dynamic routing protocol is not used, routes to VIPAs cannot be advertised.
For this reason, use a network prefix defined as being on-link for the interfaces
that are associated with the VIPA. In this way, routers and hosts perceive that the

Chapter 3. IPv6 protocol 21

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

VIPA is on a physical interface and sends Neighbor Discovery messages (the IPv6
equivalent of an ARP request) to get the MAC address of the interface. This is not
the best method for setting up VIPAs if a dynamic routing protocol is being used.
It is better to associate VIPAs with interfaces on different LANs. Without a
dynamic routing protocol, you can use a network prefix defined as being on-link
for the associated interfaces or define static routes at all routers on the same links
as the z/OS system.

See “Router advertisements” on page 27 for more information about how received
router advertisements are processed.

ICMPv6 redirects
Routes that are learned when packets are redirected by ICMPv6 replace static
routes regardless of whether or not they are replaceable. Use the
IGNOREREDIRECT keyword on the IPCONFIG6 statement in the TCP/IP profile
to prevent the stack from adding routes learned when ICMPv6 redirects packets.

Rule: These routes are always ignored when an IPv6 dynamic routing protocol is
being used.

Dynamic routing protocols
The z/OS Communications Server OMPROUTE routing daemon supports the IPv6
OSPF and IPv6 RIP dynamic routing protocols. A host using one of these protocols
can learn, from adjacent routers that are also using that protocol, the network
prefixes and host addresses that can be reached.

IPv6 OSPF, IPv6 RIP, and router discovery can be used together in the same
network.
v IPv6 OSPF allows the host to learn the network prefixes and host addresses that

can be reached indirectly by way of adjacent IPv6 OSPF routers (including
default routes), as well as the network prefixes that can be reached directly on
attached links in the IPv6 OSPF domain.

v IPv6 RIP allows the host to learn the network prefixes and host addresses that
can be reached indirectly by way of adjacent IPv6 RIP routers (including default
routes).

v Router discovery allows the host to learn which network prefixes can be reached
indirectly by way of adjacent, participating routers (including default routes), as
well as which network prefixes can be reached directly on attached links.

In addition, the network prefixes that can be reached directly on attached links can
be manually configured using the Prefix keyword on the IPv6_Interface,
IPv6_OSPF_Interface, or IPv6_RIP_Interface statements in the OMPROUTE
configuration file. When IPv6 OSPF or IPv6 RIP is used together with router
discovery, the following kinds of routes can be learned from both methods:
v Default routes

Default routes are learned from both methods if adjacent routers are advertising
themselves as default routers using both IPv6 OSPF or IPv6 RIP and router
discovery. When this situation occurs, the default routes learned from IPv6 OSPF
or IPv6 RIP take precedence and generate the default routes in the TCPIP stack's
IPv6 route table. Any default routes learned from router discovery are ignored
as long as the default routes learned from IPv6 OSPF or IPv6 RIP exist.

v Prefix routes

22 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|

|
|

|
|
|
|

|
|
|

|
|
|

Prefix routes are learned from both router discovery and OMPROUTE under
each of the following conditions:
– A router is advertising by way of router discovery that the prefix is on-link

and the prefix is also manually configured to OMPROUTE using the Prefix
keyword on an IPv6_Interface, IPv6_OSPF_Interface, or IPv6_RIP_Interface
configuration statement.

Guideline: Use the Prefix keyword only when the prefix is not learned
dynamically (using router discovery or a dynamic routing
protocol).

For example, if there is a need to supplement the list of prefixes being
advertised as on-link by the routers. If the same prefix is configured using the
Prefix keyword and learned from router discovery, the route in the TCPIP
stack's route table is the route added by OMPROUTE as a result of the Prefix
keyword. Any route for the same prefix that is learned from router discovery
is ignored as long as the OMPROUTE route exists.

Restriction: Prefixes learned from only OMPROUTE are not used for address
autoconfiguration. If a prefix is learned from both OMPROUTE
and router discovery, it can still be used for autoconfiguration
even though the route learned from OMPROUTE is the one in
the TCPIP stack route table.

– A router is advertising by way of router discovery that either the prefix is
on-link or the prefix can be reached by way of an adjacent router, and a
router is also advertising by way of IPv6 OSPF that the prefix is on-link.
In this case, the route in the TCPIP stack route table is the route added by
OMPROUTE as a result of the information received by way of IPv6 OSPF.
Any route for the same prefix that is learned from router discovery is ignored
as long as the OMPROUTE route exists. As in the previous condition, an
on-link prefix that is learned from router discovery can still be used for
address autoconfiguration.

– A router is advertising by way of router discovery that the prefix is on-link
and it is also learned, by way of IPv6 OSPF or IPv6 RIP, that the prefix can be
reached by way of an adjacent router.
In this case, the route in the TCPIP stack route table is the route added as the
result of router discovery. This occurs because the router discovery
information indicates that the prefix resides on a directly attached link, while
the IPv6 OSPF or IPv6 RIP information indicates that the prefix can be
reached indirectly, by way of the router from which the IPv6 OSPF or IPv6
RIP information was received. Any route for the prefix that is learned from
IPv6 OSPF or IPv6 RIP is ignored as long as the router discovery route exists.

– Router discovery advertisements are received that indicate that the prefix can
be reached by way of an adjacent router. In addition, IPv6 OSPF or IPv6 RIP
advertisements are received that indicate that the prefix can be reached by
way of an adjacent router.
In this case, the route in the TCPIP stack route table is the route that was
added by OMPROUTE as a result of the information that was received by
way of IPv6 OSPF or IPv6 RIP. Any route for the same prefix that is learned
from router discovery is ignored as long as the OMPROUTE route exists.

Tip for IPv6 OSPF routing protocol addressing conventions
IPv6 OSPF is based on IPv4 OSPF and has many similar concepts and controls.
The primary difference between IPv6 OSPF and IPv4 OSPF is that for IPv6 OSPF,
IP addresses are not used to communicate topology information. For example, in

Chapter 3. IPv6 protocol 23

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

IPv4 OSPF, an interface is referred to by its IPv4 home address, but in IPv6 OSPF
an interface is not referred to by any of its IPv6 home addresses. Instead, it is
referred to by an integer interface ID. Similarly, IPv6 OSPF router IDs are not IPv6
home addresses; they are 32-bit integers written in IPv4-style dotted-decimal
notation. Area IDs in IPv6 OSPF are also 32-bit integers written in IPv4-style
dotted-decimal notation.

Guideline: Even though router IDs and area IDs in IPv6 OSPF are expressed
similarly to the IPv4 equivalents, they are not the same constants. A
router can have an IPv6 router ID which is different from its IPv4
router ID. If both IPv4 and IPv6 OSPF are running simultaneously, the
area topology of each IP version can be completely different, with
different area numbers and hierarchy.

Authentication with the IPv6 OSPF routing protocol
IPv4 OSPF includes authentication as part of the OSPF protocol. OMPROUTE
supports both password authentication and MD5 cryptographic authentication for
IPv4 OSPF. For IPv6 OSPF, authentication has been removed from OSPF itself.
Instead, IPv6 OSPF relies on IPSec to ensure integrity and authentication of routing
exchanges. As a result, OMPROUTE does not include any explicit authentication
support, but instead relies on the underlying support provided by the z/OS
TCP/IP stack.

To use IPSec to authenticate IPv6 OSPF routing exchanges on a link over which
OMPROUTE establishes adjacencies, you must create a single manual security
association (SA) for all traffic on that link, with corresponding filter definitions to
permit the OSPF traffic. Use the interface SECCLASS to define different security
associations for different links. This procedure is described in z/OS Communications
Server: IP Configuration Guide.

Considerations for route selection
Route precedence is as follows:
v Host route to the destination.
v Route for a prefix of the destination. If there are routes to multiple prefixes of

the destination, the route with the most specific prefix is chosen.
v Default route.

For IPv4, the concept exists of a special default multicast route with a destination
of 224.0.0.0 and a netmask of 255.255.255.255. For IPv6, there is no special default
multicast route. Because all IPv6 multicast addresses start with FF, the following
prefix route serves the same function as the default multicast route:
destination = FF00::/8

Considerations for multipath routes
Multiple routes to the same destination are considered multipath routes. Multipath
routes can be used for load balancing. Multipath route support for IPv6 is identical
to multipath route support for IPv4. Define the MULTIPATH keyword on the
IPCONFIG6 statement to control whether multiple routes are selected.

Tips:

v If MULTIPATH is not enabled, the first active route added is selected.
v When a route that belongs to a multipath group is being used, the MTU

that is used is the minimum MTU of all routes in the multipath group.

24 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

The VARY TCPIP,,OBEYFILE command and routes
When a VARY TCPIP,,OBEYFILE command is issued and the profile contains a
BEGINROUTES block, the following occurs:
v All static routes (both replaceable and non-replaceable) are deleted and replaced

by any static routes defined in the BEGINROUTES block.
v All routes learned by way of packets that were redirected by ICMPv6 are

deleted.
v Routes learned by way of router advertisements or by way of a dynamic routing

daemon are not affected by the processing of the VARY TCPIP,,OBEYFILE
command, unless the profile data set specified on the VARY TCPIP,,OBEYFILE
command contains a non-replaceable static route to the same destination for
which a route exists that was learned by way of router advertisements or a
dynamic routing daemon. In this case, the existing route is deleted and is
replaced by the non-replaceable static route.

ICMPv6
The Internet protocol (IP) moves data from one node to another; however, for IP to
perform this task successfully, there are other functions that need to be performed:
error reporting, router discovery, diagnostics, and others. In IPv6, all these tasks
are carried out by the Internet Control Message Protocol (ICMPv6).

In addition, ICMPv6 provides a framework for Multicast Listener Discovery (MLD)
and Neighbor Discovery (ND), which carry out the tasks of conveying multicast
group membership information (the equivalent of the IGMP protocol in IPv4) and
address resolution (performed by ARP in IPv4).

The following are types of ICMPv6 messages:

Error Report errors in the forwarding or delivery of IPv6 packets.

Informational
Provide diagnostic functions and additional host functionality such as
MLD and ND.

The following ICMPv6 messages are supported:
v Destination unreachable
v Packet too big
v Time exceeded (hop limit exceeded)
v Echo request/reply
v Parameter problem
v Multicasting messages:

– Group membership query
– Report
– Done

v Neighbor discovery:
– Router solicitation and advertisement
– Neighbor solicitation and advertisement
– Redirect

Tip: Not all ICMPv4 messages have equivalents in ICMPv6.

Chapter 3. IPv6 protocol 25

Multicast Listener Discovery
In early IP networks, a packet could be sent to either a single device (unicast) or to
all devices (broadcast); a single transmission destined for a group of devices was
not possible. IPv6 uses multicast for those purposes for which IPv4 used broadcast;
consequently, IPv6 does not support broadcast.

Applications can use multicast transmissions to enable efficient communication
between groups of devices. Data is transmitted to a single multicast IP address and
received by any device that needs to obtain the transmission.

An IPv6 router uses Multicast Listener Discovery (MLD) protocol to discover the
following:
v The presence of multicast listeners (nodes wanting to receive multicast packets)

on its directly attached links
v Which multicast addresses are of interest to those listeners

MLD provides this information to the multicast routing protocol the router is
using. This ensures that multicast packets are delivered to all links where there are
interested receivers. MLD is derived from IGMPv2.

Guideline:

One important difference is that MLD uses ICMPv6 message types, rather than
IGMP message types.

MLD has a router function and a listener function. The router function discovers
the presence of multicast listeners and ensures delivery of multicast packets to
listeners. The listener function informs routers when it starts and stops listening for
a multicast address and responds to queries about multicast addresses. z/OS
Communications Server V1R4 and above implement the listener function.

When a listener starts listening for a multicast address on an interface, it sends an
MLD report message for that address on that interface.

When a listener stops listening for a multicast address on an interface, it sends a
single MLD done message.

A router sends an MLD query message to query listeners about multicast
addresses. A specific query is sent to listeners for a specific multicast address on a
receiving interface. A general query is sent to listeners for all multicast addresses
on a receiving interface. These query messages contain a maximum response delay
(MRD). The MRD causes listeners to delay report messages and not send them if
another listener reports first. If no reports for the address are received from the
link after the response delay of the last query has passed, the routers on the link
assume that the address no longer has any listeners there; the address is therefore
deleted from the list and its disappearance is made known to the multicast routing
component.

If you configure IP security for IPv6, see z/OS Communications Server: IP
Configuration Guide for information about filter rules for MLD packets.

26 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Neighbor discovery
Neighbor discovery (ND) is an ICMPv6 function that enables a node to identify
other hosts and routers on its links. It corresponds to a combination of IPv4
protocols:
v ARP
v ICMP Router Discovery
v ICMP Redirect

It maintains routes, MTU, retransmit times, reachability time, and prefix
information based on information received from the routers. ND uses duplicate
address detection (DAD) to verify the host's home addresses are unique on the
LAN.

ND uses address resolution to determine the link-layer addresses for neighbors on
the LAN. ND uses reachability detection to determine neighbor reachability.

If you configure IP security for IPv6, see z/OS Communications Server: IP
Configuration Guide for information about filter rules for neighbor discovery
packets.

Router advertisements
Router advertisements are sent by routers to announce their availability. z/OS
Communications Server receives router advertisements, but it does not originate
them. The router advertisement includes information that is used by z/OS
Communications Server, including an indication of whether the sending router
should be used as the default router.

Sending router should be a default router

If the router advertisement indicates that the sending router should be used as a
default router, z/OS Communications Server takes the following actions:
v If the dynamic default route that is to be added as the result of the received

router advertisement has already been added by a previous advertisement, the
length of time that that route remains valid is reset using the Lifetime value
specified on the received advertisement. If no default route exists, a dynamic
default route is added as a result of the received router advertisement.

v If a default route exists that has equal or lower precedence than the route that is
to be added, a dynamic route is added as a result of the received router
advertisement. If a route with lower precedence exists, it is removed but is
reinstated later if the dynamic default route that is added is removed. The
following types of routes have equal or lower precedence:
– A router advertisement route that has a reachable gateway, an active interface,

and the same preference value as the default router preference value that was
received in the advertisement; this type of route has equal precedence

– A router advertisement route that has an unreachable gateway, an inactive
interface, or a lower preference value than the default router preference value
that was received in the advertisement; this type of route has lower
precedence

– A replaceable static route; this type of route has lower precedence
The dynamic default route that is added has the following characteristics:
– The next-hop address is the source address of the advertisement.
– The interface is the interface on which the advertisement was received.

Chapter 3. IPv6 protocol 27

|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|

|

|

– The metric is set according to the preference value that was received in the
advertisement. The setting 1 indicates high preference, 2 indicates medium
preference, and 3 indicates low preference.

– The length of time that the route remains valid is equal to the Lifetime value
set on the advertisement.

v If a default route exists that has a higher precedence than the route that is to be
added, a dynamic default route is not added as the result of the received router
advertisement. A dynamic default route is added later if the route with the
higher precedence is removed. The following types of routes have higher
precedence:
– A router advertisement route that has a reachable gateway, an active interface,

and a higher preference value than the default router preference value that
was received in the advertisement

– A non-replaceable static route
– An IPv6 OSPF route
– An IPv6 RIP route

v A neighbor cache entry is created or updated for the sending router. The
neighbor cache entry contains the following kinds of information obtained from
the router advertisement:
– An indication that the neighbor is a router
– An indication that the neighbor is a default router
– The link-local and link-layer addresses of the neighbor

Sending router should not be a default router

If the router advertisement indicates that the sending router should not be used as
a default router, z/OS Communications Server takes the following actions:
v If an IPv6 dynamic default route exists that has the advertisement's source as its

next hop and the receiving interface as its interface, and that route was added as
the result of a received router advertisement (but not, for example, as the result
of IPv6 OSPF or IPv6 RIP), that route is deleted.

v A neighbor cache entry is created or updated for the sending router. The
neighbor cache entry contains the following kinds of information obtained from
the router advertisement:
– An indication that the neighbor is a router
– An indication that the neighbor is not a default router
– The link-local and link-layer addresses of the neighbor

Route information option for router advertisements
A router advertisement can contain route information options. Each route
information option contains an IPv6 prefix and information that indicates whether
the prefix can be reached by way of the router that originated the router
advertisement.

If the option contains a nonzero Route Lifetime value, which indicates that the
prefix can be reached by way of the router, the following actions occur:
v If the dynamic prefix route that is to be added as the result of the received

router advertisement has already been added by a previous advertisement, the
length of time that that route remains valid is reset using the Route Lifetime
value from the route information option.

v If no route for the prefix exists, or if a route exists that has equal or lower
precedence than the route that is to be added, then a dynamic prefix route is

28 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|

|
|

|
|
|
|
|

|
|
|

|

|

|

|
|
|

|

|

|

|

|
|

|
|
|
|

|
|
|

|

|

|

|
|
|
|
|

|
|

|
|
|
|

|
|

added as the result of the received router advertisement. If a route with lower
precedence exists, it is removed but is reinstated later if the dynamic prefix route
that is added is removed. The following types of routes have equal or lower
precedence:
– A router advertisement route that has a reachable gateway, an active interface,

and the same preference value as the preference value that was received in
the route information option; this type of route has equal precedence.

– A router advertisement route that has an unreachable gateway, an inactive
interface, or a lower preference value than the preference value that was
received in the route information option; this type of route has lower
precedence

– A replaceable static route; this type of route has lower precedence
The dynamic prefix route that is added has the following characteristics:
– The next-hop address is the source address of the advertisement.
– The interface is the interface on which the advertisement was received
– The metric is set according to the preference value that was received in the

Route Information option. The setting 1 indicates high preference, 2 indicates
medium preference, and 3 indicates low preference.

– The length of time that the route remains valid is equal to the Route Lifetime
value set on the option.

v If a route for the prefix exists that has a higher precedence than the route that is
to be added, a dynamic prefix route is not added as the result of the received
router advertisement. A dynamic prefix route is added later if the route with the
higher precedence is removed. The following types of routes have higher
precedence:
– A router advertisement route that has a reachable gateway, an active interface,

and a higher preference value than the preference value that was received in
the route information option

– A non-replaceable static route
– An IPv6 OSPF route
– An IPv6 RIP route

If the option contains the value 0 for the Route Lifetime value, which indicates that
the prefix can no longer be reached by way of the router, the following action
occurs:
v If an IPv6 dynamic prefix route exists that has the source of the advertisement as

its next hop and the receiving interface as its interface, and that route was added
as the result of a received router advertisement (but not, for example, as the
result of IPv6 OSPF or IPv6 RIP), that route is deleted.

Prefix information option for router advertisements
A router advertisement can contain prefix information options. Each prefix
information option contains an IPv6 prefix and flags that indicate how the prefix
can be used.

A prefix information option contains two flags:
v An on-link flag, which indicates whether on-link processing needs to be

performed for the prefix on the shared link. When a prefix is on-link, the
addresses in that prefix can be reached on that link without going through a
router.

v An autonomous flag, which indicates whether autoconfiguration processing
needs to be performed for the prefix on the shared link.

Chapter 3. IPv6 protocol 29

|
|
|
|

|
|
|

|
|
|
|

|

|

|

|

|
|
|

|
|

|
|
|
|
|

|
|
|

|

|

|

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

The sending router can set one flag or both flags in the prefix information option.

On-link processing

The sending router indicates that a prefix is on-link by setting the on-link flag and
specifying a nonzero value for the Valid Lifetime value for the prefix. If the prefix
information option indicates that the prefix is on-link, the following criteria are
true:
v z/OS Communications Server adds an IPv6 dynamic direct route (if it was not

already added by a previous advertisement).
v The destination of the route is the prefix that is being processed.
v The interface of the route is the interface on which the advertisement was

received.
v The length of time that the route remains valid is set or is reset using the Valid

Lifetime value from the Prefix Information option.

If a non-replaceable static route exists to this prefix or if a direct route to the prefix
was added by OMPROUTE (because the PREFIX parameter was specified on the
IPV6_INTERFACE, IPV6_OSPF_INTERFACE, or IPV6_RIP_INTERFACE statement
in the OMPROUTE configuration file or because a router advertised by way of
IPv6 OSPF that the prefix is on-link), then z/OS Communications Server does not
add the dynamic direct route. If a replaceable static route exists to this prefix, the
dynamic direct route is added, which replaces the replaceable route. The
replaceable static route is reinstated if the dynamic direct route is removed later.

The sending router can indicate that a prefix is no longer on-link by setting the
on-link flag and specifying the value 0 for the Valid Lifetime value for the prefix. If
an IPv6 dynamic direct route exists for which the destination is the prefix that is
being processed and for which the interface is the receiving interface, and that
route was added as the result of a received router advertisement (for example, the
route was not added by OMPROUTE), then z/OS Communications Server deletes
the route.

Address autoconfiguration processing

The sending router can indicate that a prefix is to be used for address
autoconfiguration by setting the autonomous flag and specifying a nonzero Valid
Lifetime value for the prefix. If the Prefix Information option indicates that the
prefix should be used for address autoconfiguration, z/OS Communications Server
performs the following actions:
v Adds an IPv6 home address to the receiving interface for the public

autoconfigured address (if that home address was not added by a previous
advertisement)

v Adds an IPv6 implicit route for the receiving interface and the public
autoconfigured address (if that route was not added by a previous
advertisement)

v Sets or resets the length of time that the home address and implicit route remain
valid, using the Valid Lifetime value from the Prefix Information option

v Sets or resets the length of time that the home address remains in the preferred
state (not in the deprecated state), using the Preferred Lifetime value from the
Prefix Information option

If you configured this interface to support temporary addresses (you configured
the TEMPADDRS parameter on the IPCONFIG6 statement and the TEMPPREFIX

30 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|

|

|
|
|
|

|
|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

parameter that is specified on the INTERFACE statement includes the prefix),
z/OS Communications Server also performs the following actions:
v Adds an IPv6 home address for the receiving interface and for the temporary

autoconfigured address (if that home address was not already added by a
previous advertisement)

v Adds an IPv6 implicit route for the receiving interface and for the temporary
autoconfigured address (if that route was not already added by a previous
advertisement)

v Sets or resets the length of time that the home address and implicit route remain
valid, using the Valid Lifetime value from the Prefix Information option and the
TEMPADDRES VALIDLIFETIME value that is configured

v Sets or resets the length of time that the home address remains in the preferred
state (not in the deprecated state), using the Preferred Lifetime value from Prefix
Information option and the configured TEMPADDRS PREFLIFETIME value

Restriction: Prefixes that are learned solely by using the Prefix parameter on the
OMPROUTE IPV6_INTERFACE, IPV6_OSPF_INTERFACE, or
IPV6_RIP_INTERFACE statement are never used for
autoconfiguration.

If you manually configure addresses for an IPv6 interface using the INTERFACE
statement, addresses for that interface cannot be autoconfigured. If a prefix is not
64 bits in length, it is not used for autoconfiguration of addresses. Unlike the prefix
route and the default route, the implicit route and home address cannot
immediately be deleted; these items must age out. If the Valid Lifetime value is set
to infinity, the implicit route and home address for the public autoconfigured
address do not time out. For more information about autoconfiguration, see
“Stateless address autoconfiguration” on page 34.

Route timeouts
The valid lifetime for each type of route is updated (extending the life of the route)
by the periodic receipt of router advertisements as long as the sending router is
available and is not reconfigured relative to its defined prefixes or default router
status.

When a Prefix Information option contains the Valid Lifetime value infinity, the
implicit or prefix route associated with the public autoconfigured address is
considered permanent and does not age unless a future Prefix Information option
for the prefix contains a Valid Lifetime value that is not infinity.

Expiration of the valid lifetime for a default route is immediate if a future router
advertisement indicates that the sending router is no longer a default router.
Expiration of the valid lifetime for a prefix route is immediate if a future Prefix
Information Option for the prefix contains the Valid Lifetime value 0 or if a future
Route Information Option for the prefix contains the Route Lifetime value 0. The
valid lifetime for an implicit route cannot expire immediately because the
minimum lifetime allowed is 2 hours; the lifetime must age out naturally.

VARY TCPIP,,OBEYFILE command rules
Rules: Observe the following rules for the VARY TCPIP,,OBEYFILE command:
v If a non-replaceable static route in the profile data set specified on the VARY

TCPIP,,OBEYFILE command has the same destination as an existing route that
was added due to a received Router Advertisement, the existing route is
replaced by the non-replaceable static route.

Chapter 3. IPv6 protocol 31

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

v If the profile data set specified on the VARY TCPIP,,OBEYFILE command
specifies a manually configured home address for an interface that already has
autoconfigured addresses, the autoconfigured addresses are deleted along with
their associated implicit routes.

With the exception of the two preceding rules, all autoconfigured home addresses
and routes added due to received Router Advertisements are maintained through
VARY TCPIP,,OBEYFILE command processing.

Redirect processing
A node can receive a Redirect message from an on-link router if the router
determines that the destination is on-link or if there is a better first-hop router for
the given destination. z/OS Communications Server can be configured to ignore
the IPv6 Redirects sent by routers by defining the IGNOREREDIRECT keyword on
the IPCONFIG6 statement. In addition, IPv6 Redirects are ignored if the IPv6 OSPF
or IPv6 RIP protocol of the OMPROUTE routing daemon is being used. If
processing of Redirect messages is enabled, z/OS Communications Server begins
using the new first-hop information which is identified in the Redirect message. A
router must use its link-local address as the source address in Redirects that it
originates. A received Redirect is only processed if the current route to the
destination in the IPv6 route table has the source address of the Redirect as its next
hop. Therefore, if Redirects are to be accepted, all static indirect routes must be
configured using the next-hop router's link-local address. If the previous route to
the destination was a host route, it is deleted from the route table to keep it from
being used by Multipath processing.

If Redirect processing is disabled, z/OS Communications Server silently discards
the Redirect message.

Duplicate address detection
Duplicate address detection (DAD) is used to verify that an IPv6 home address is
unique on the LAN before assigning the address to a physical interface (for
example, QDIO). z/OS Communications Server responds to other nodes doing
DAD for IP addresses assigned to the interface. DAD is not done for VIPAs or
loopback addresses. DAD for local addresses is performed for physical interfaces
when one of the following occurs:
v The interface is started (the autoconfigured link-local address and manually

configured addresses and /prefixes are checked).
v A VARY TCPIP,,OBEYFILE command is issued for a profile data set containing

an INTERFACE ADDADDR for an already active interface.
v A router advertisement containing new prefix information and the autonomous

bit set is received on an interface enabled for stateless autoconfiguration.
v A temporary autoconfigured address is generated.

To disable DAD checking, specify DUPADDRDET 0 on the INTERFACE statement.

DAD processing involves the following steps:
1. The host joins a link-local all-nodes multicast group at interface start

processing.
2. The host joins a solicited-node group for the local address.
3. A neighbor solicitation is sent to the solicited-node multicast address with the

tentative address for which DAD is being performed.

32 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

4. The host waits for a neighbor response (neighbor advertisement or neighbor
solicitation) on the interface.

5. If no neighbor response is received within the specified retransmit time, the
address is considered unique on the LAN.

6. If a neighbor response is received within the specified time, the address is not
unique. The host leaves the solicited-node multicast group, issues a duplicated
address detected console message, and marks the address unavailable due to a
duplicate address.

Unless DAD is disabled, the address is not considered assigned to an interface
until DAD is successfully completed for the local address. Packets can be received
for the all-nodes or solicited-node multicast groups, but there is no response
because the address is not yet assigned to the interface. If the local address is a
manually configured address, the addresses are displayed in a Netstat Home/-h
report as Unavailable (if the interface has not been started or if DAD failed).

In situations where DAD is not done for the IPv6 home address (by specifying
DUPADDRDET 0 on the INTERFACE statement or if it is a VIPA), the z/OS
Communications Server host still responds if another node is doing DAD for an
IPv6 address assigned to the interface or for IPv6 VIPAs when the interface is
assigned to handle VIPAs; responses are not sent for loopback addresses.

Address resolution
Address resolution in IPv6 is similar to ARP processing in IPv4, except ICMP
neighbor solicitations, neighbor advertisements, router redirects, and router
advertisements are used to obtain the link-layer (MAC) address. The host sends a
neighbor solicitation to a solicited-node multicast address. It waits for a response
for a period of time (retransmit time). If one is received, then the link-layer address
contained in the neighbor advertisement is cached and any queued packets are
sent to the address. If there is no response, the host repeats this process up to three
times before it declares a neighbor unreachable.

A neighbor cache entry can also be built when a neighbor solicitation for a local
address is received and the solicitation contains the sender's link-layer address
(and the source address is not the unspecified address, that is, the sender is not
performing DAD). The neighbor cache entry is built if it does not exist based on
the assumption that a packet is soon sent to this neighbor. Building the cache entry
reduces the overhead of having to perform the task of address resolution for the
neighbor at a later time.

Issue the Netstat ND/-n command to display information for a specific neighbor
or all neighbor cache entries. It displays the neighbor link-layer address, state,
whether the neighbor is a router or host, and if a router is a default router. The
following are possible neighbor states:

Incomplete
Address resolution is in progress.

Reachable
Positive confirmation of reachability was received.

Stale An unsolicited neighbor discovery message has updated the link-layer
address. Reachability is verified the next time the entry is used.

Delay More than reachable time has elapsed since last positive confirmation of
reachability. Default reachable time is 30 seconds. It can be overridden by

Chapter 3. IPv6 protocol 33

data provided by neighbor advertisements. A small delay is experienced
before starting a probe of neighbor (upper layers can provide
confirmation).

Probe Neighbor solicitations are sent to verify neighbor reachability.

Neighbor unreachability detection
Neighbor unreachability detection verifies that two-way communication with a
neighbor node exists. The host sends a neighbor solicitation to a node and waits
for a solicited neighbor advertisement. If a solicited neighbor advertisement is
received, the node is considered reachable. If there is no response, the host can
repeat this process before it declares a neighbor unreachable. If a neighbor is found
to be unreachable, the neighbor cache entry is deleted.

Assigning IP addresses to interfaces
Stateless address autoconfiguration is always used to generate and assign a
link-local address to a physical IPv6 interface. If it cannot assign a link-local
address, interface activation fails. No other addresses are assigned to the interface
(whether they are assigned using stateless address autoconfiguration or manual
configuration) until a link-local address has been successfully assigned. Link-local
addresses are not aged out.

Stateless address autoconfiguration
The larger address field of IPv6 solves a number of problems inherent in IPv4, but
the size of the address itself might be a potential problem for the TCP/IP
administrator. As a result, IPv6 has the capability to automatically assign an
address to an interface at initialization time. In this way, a network can become
operational with minimal action on the part of the TCP/IP administrator. Stateless
autoconfiguration is supported for an OSA-Express QDIO interface in z/OS
Communications Server if no manually configured addresses are defined on the
interface. Manual configuration of the host's local addresses is not required except
for VIPA interfaces. Stateless address autoconfiguration consists of the following
steps:
1. During system startup, the host obtains an interface token from the interface

hardware to create an interface ID. It generates its own addresses using a
combination of router advertised prefixes and interface IDs.

2. If temporary addresses are supported on the interface (the TEMPADDRS
parameter is configured on the IPCONFIG6 statement and the TEMPPREFIX
parameter is configured on the INTERFACE statement), a random interface ID
is generated. Temporary addresses are generated using a combination of
router-advertised prefixes and the random interface ID.

3. Duplicate address detection is performed for each address. If a duplicate is not
detected or Duplicate Address Detection (DAD) is disabled for the interface
(DUPADDRDET 0 specified on the INTERFACE statement), the local address is
added.

4. A stateless autoconfigured address is deleted when its valid lifetime expires or
when a manually defined address is added to the interface.
An IPv6 address generated using stateless address autoconfiguration has two
timers associated with it: A preferred lifetime timer and a valid lifetime timer.
Router advertisements contain the valid lifetime and preferred lifetime timers
for a prefix. Temporary autoconfigured addresses also have a valid lifetime and
preferred lifetime timer configured on the IPCONFIG6 statement (TEMPADDRS
PREFLIFETIME value VALIDLIFETIME value). The valid and preferred lifetime

34 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

timers for a temporary autoconfigured address are the lesser of the values
contained in the router advertisement for the prefix and the value specified on
the IPCONFIG6 statement. The valid and preferred lifetime timers for a public
autoconfigured address are the values that are in the router advertisement for
the prefix.
An IPv6 address goes through two phases to gracefully handle the address
expiration:

Preferred
Use is unrestricted.

Deprecated
In anticipation of the expiration of the leased period, use of the address
is discouraged.

When the preferred lifetime expires, the address created from the prefix is
deprecated. When the valid lifetime expires, the address created from the prefix
is deleted and an operator message is issued.

Autoconfiguration considerations
Consider the following during autoconfiguration:
v A manually configured address or prefix on an interface disables stateless

autoconfiguration for the interface.
v INTERFACE name DELADDR addr/prefix and INTERFACE name DEPRADDR

addr/prefix profile statements that are activated with the VARY TCPIP,,OBEYFILE
command are not valid for autoconfigured addresses.

v A VARY TCPIP,,OBEYFILE command whose profile contains ADDADDR
INTERFACE or DELADDR INTERFACE statements can affect stateless
autoconfiguration:
– An INTERFACE name ADDADDR addr/prefix profile statement that is

activated with the VARY TCPIP,,OBEYFILE command results in stateless
autoconfigured addresses on the interface to be deleted. Stateless
autoconfiguration capability is disabled.

– If the DELADDR profile statement removes the last manually configured
address or prefix, stateless autoconfiguration is enabled and subsequent
router advertisements can generate autoconfigured addresses.

v Autoconfigured addresses are not automatically added to the Domain Name
System (DNS). Consider using VIPA addresses in conjunction with
autoconfigured addresses.

Guidelines:

v Consider using VIPA addresses in conjunction with autoconfigured
addresses because public autoconfigured addresses are not
automatically added to the DNS.

v Do not add temporary autoconfigured address to the DNS.
Temporary autoconfigured addresses are regenerated periodically to
prevent client activity from being correlated. If a DNS name is
associated with the addresses, the DNS name might be used for
correlation.

IP address takeover following an interface failure
The TCP/IP stack in z/OS Communications Server provides transparent
fault-tolerance for failed (or stopped) IPv6 interfaces, when the stack is configured

Chapter 3. IPv6 protocol 35

with redundant connectivity onto a LAN. This support is provided by the z/OS
Communications Server interface-takeover function and applies to the IPv6
IPAQENET6 interface type.

At device or interface startup time, TCP/IP dynamically learns of redundant
connectivity onto the LAN, and uses this information to select suitable backups in
the case of a future failure of the device/interface. This support makes use of
neighbor discovery flows for IPv6 interfaces, so upon failure (or stop) of an
interface, TCP/IP immediately notifies stations on the LAN that the original IPv6
address is now reachable by way of the backup's link-layer (MAC) address. Users
targeting the original IP address see no outage due to the failure, and they are
unaware that any failure occurred.

Because this support is built upon neighbor discovery flows, no dynamic routing
protocol in the IP layer is required to achieve this fault tolerance. To enable this
support, you must configure redundancy onto the LAN by defining and activating
multiple INTERFACEs onto the LAN. Note that an IPv4 device cannot back up an
IPv6 interface, or vice versa.

The interface-layer fault-tolerance can be used in conjunction with VIPA addresses,
where applications can target the VIPA address, and any failure of the real LAN
hardware is handled by the interface-takeover function. This differs from
traditional VIPA usage, where dynamic routing protocols are required to route
around true hardware failures.

How to get addresses for VIPAs
VIPA interfaces are always active. IPv6 VIPAs can be site-local or global. Link-local
VIPAs are not allowed because link-local addresses are for use only on the
associated LAN and there is no VIPA LAN.

Rule: You must manually configure all VIPAs.

To globally enable SOURCEVIPA for IPv6, configure the SOURCEVIPA keyword
on the IPCONFIG6 statement. Then, to enable SOURCEVIPA for particular
interfaces, use the SOURCEVIPAINTERFACE parameter on the INTERFACE
statement for those interfaces. The SOURCEVIPAINTERFACE parameter allows for
the specification of the interface name of the VIRTUAL6 interface whose addresses
should be used as SOURCEVIPA addresses.

Unlike IPv4, where the source VIPA selected is based upon the ordering of the
HOME list, IPv6 SOURCEVIPA uses the addresses configured on the VIPA
INTERFACE statement referenced by the SOURCEVIPAINTERFACE keyword on
the INTERFACE statement for the outbound interface. When that VIPA interface
has multiple addresses configured, the default source address selection algorithm
selects among them. For detailed information about the algorithm, see “Default
source address selection” on page 43.

Guidelines:

v Use different prefixes for IPv6 static VIPAs and for the IPv6
addresses assigned to real interfaces.

v Configure static VIPAs with different prefixes than real addresses.
Configuring static VIPAs in this way reduces the likelihood of
address collisions between the manually configured VIPAs and the
autoconfigured addresses of the real interfaces. This kind of

36 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

configuration is also necessary because duplicate address detection
(DAD) is not performed for VIPA addresses.

See “Assigning IPv6 addresses” on page 70 for information about static VIPAs.

IPv6 temporary addresses with random interface IDs
RFC 4941 addresses a potential security concern that can occur when you are using
stateless address autoconfiguration. You can use IPv6 temporary addresses with
random interface IDs to mitigate this security issue.

An autoconfigured address contains an embedded static interface identifier. The
static interface ID makes it possible to correlate independent transactions to and
from the system using the adapter, even if the overall IPv6 address changes.

RFC 4941, Privacy Extensions for Stateless Address Autoconfiguration in IPv6, defines a
mechanism to generate a random interface ID that changes over time. Temporary
autoconfigured addresses are then generated from a random interface ID. A
short-lived client application can use temporary addresses with changing
embedded interface IDs to make it more difficult to correlate activity.

A history value is used as part of the algorithm that generates the random
interface ID. The first time that an interface is started, a random number generator
generates the history value. If cryptographic hardware is available, then the
Integrated Cryptographic Service Facility (ICSF) callable service CSNBRNG is used
to generate the history value. If cryptographic hardware is not available, then a
software random number generator generates the history value. Message number
EZD0043I indicates the source of the history value. See z/OS Cryptographic Services
ICSF Application Programmer's Guide for more information about the CSNBRNG
callable service.

Configuring a TCP/IP stack to generate IPv6 temporary
addresses

To implement the mechanism defined in RFC 4941 regarding the use of randomly
generated interface IDs, you must first configure a TCP/IP stack to generate IPv6
temporary addresses.

Before you begin

Before you configure a TCP/IP stack to use IPv6 temporary addresses, do the
following:
v Understand IPv6 stateless address autoconfiguration. See “Stateless address

autoconfiguration” on page 34 for a description of autoconfigured addresses,
both public and temporary.

v Determine whether you have a client application that would benefit from using
temporary autoconfigured addresses. Temporary addresses are designed to be
used with short-lived client connections.

v Determine whether stateless address autoconfiguration is being used for one or
more of the OSA-Express IPAQENET6 interfaces that are defined in the TCP/IP
profile. Temporary autoconfigured addresses can be generated only for an
OSA-Express IPAQENET6 interface that is using autoconfiguration (the IPADDR
parameter is not specified with the IP address or prefix on the INTERFACE
statement).

Chapter 3. IPv6 protocol 37

1. Enable the generation of temporary addresses by configuring the TEMPADDRS
parameter on the IPCONFIG6 statement. For more information about the
TEMPADDRS parameter, see the IPCONFIG6 statement in z/OS Communications
Server: IP Configuration Reference.

2. (Optional) Set the preferred lifetime and the valid lifetime for temporary
addresses by configuring the parameters PREFLIFETIME preflifetime
VALIDLIFETIME validlifetime on the IPCONFIG6 statement. Default values are
used if you do not configure these parameters. The preferred lifetime and valid
lifetime values apply to all temporary addresses on the TCP/IP stack. For more
information about preferred and valid lifetimes see “Stateless address
autoconfiguration” on page 34. For more information about the PREFLIFETIME
and VALIDLIFETIME parameters, see the information about the IPCONFIG6
statement in z/OS Communications Server: IP Configuration Reference.

3. (Optional) Limit the IPv6 prefixes for which temporary addresses can be
generated by configuring the TEMPPREFIX parameter on one or more
INTERFACE statements. In most cases, you can use the default value
TEMPPREFIX ALL, which enables temporary addresses to be generated for all
prefixes that are learned from router advertisements over the interface. If you
need to limit the prefixes for which temporary addresses are generated for an
interface, you can specify the TEMPPREFIX parameter on the INTERFACE
statement. For more information about the TEMPPREFIX parameter, see the
information about the IPAQENET6 INTERFACE statement in z/OS
Communications Server: IP Configuration Reference.

Guideline: If source VIPA is enabled and the SOURCEVIPAINT parameter is
configured for an interface, the default source address selection
algorithm selects an address from the addresseses for the source
VIPA interface, not from the addresses for the outbound interface.
Specify TEMPPREFIX NONE to disable unnecessary generation of
temporary addresses for the outbound interface. See “VIPA
considerations with source address selection” on page 44 for more
information.

What to do next

When you are done, configure the client application to use temporary addresses.
See “Enabling a client application to use IPv6 temporary or public addresses.”

Enabling a client application to use IPv6 temporary or public
addresses

After you have configured a TCP/IP stack to generate IPv6 temporary addresses,
you must enable the client application to use these addresses or IPv6 public
addresses.

Before you begin

You need to have configured the TCP/IP stack to generate temporary IPv6
addresses. See “Configuring a TCP/IP stack to generate IPv6 temporary addresses”
on page 37.
1. Identify the job name of the client application for which temporary or public

addresses will be used.
2. To specify that temporary IPv6 addresses are preferred for an application, do

the following:

38 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|

|
|

|
|

v Specify a JOBNAME jobname TEMPADDRS entry on the SRCIP statement.
v Use the socket API extensions to specify source IP address preferences at the

socket level.

For more information about the SRCIP statement, see z/OS Communications
Server: IP Configuration Reference. This information includes a description of how
the job name is determined for an application.

3. To specify that public IPv6 addresses are preferred for an application, do the
following:
v Specify a JOBNAME jobname PUBLICADDRS entry on the SRCIP statement.
v Use the socket API extensions to specify source IP address preferences at the

socket level.
For more information about the SRCIP statement, see z/OS Communications
Server: IP Configuration Reference. The information includes a description of how
the job name is determined for an application.

What to do next

When you are done, you can display the configured and generated temporary
address information. See “Displaying the configured and generated temporary or
public address information.”

Displaying the configured and generated temporary or public
address information

After you have configured the TCP/IP stack and the client application, you can
display the temporary or public address information.

Before you begin

You must have done the following:
v Configured the TCP/IP stack to generate IPv6 temporary addresses.
v Configured the client application to use IPv6 temporary or public addresses.
1. Issue the Netstat CONFIG/-f command to display the TempAddresses setting

and the PreferredLifetime and ValidLifetime values. For a description of these
fields, see the Netstat CONFIG/-f report example in z/OS Communications
Server: IP System Administrator's Commands.

2. Issue the Netstat DEvlinks/-d command to display the TempPrefix values. For
a description of this field see the Netstat DEvlinks/-d report example in z/OS
Communications Server: IP System Administrator's Commands.

3. Issue the Netstat HOme/-h command to display any generated temporary
addresses. The Flags field in the display indicates Temporary for a temporary
address. The ValidLifetimeExp field in the display indicates when the
temporary address will be deleted. For a description of this report, see the
Netstat HOme/-h report example in z/OS Communications Server: IP System
Administrator's Commands.

4. Issue the Netstat SRCIP/-J command to display entries in the SRCIP statement
block. A Job Name entry indicates TEMPADDRS for the Source field if a temporary
address is to be preferred for the client's source IP address. A Job Name entry
indicates PUBLICADDRS for the Source field if a public address is to be preferred
for the client's source IP address.

Chapter 3. IPv6 protocol 39

|

|
|

|
|
|

|
|

|

|
|

|
|

|

|
|
|
|
|

Default address selection
IPv6 addressing architecture allows multiple unicast addresses to be assigned to
interfaces. These addresses might have different reachability scopes (link-local or
global). These addresses can also be preferred or deprecated. Privacy
considerations have introduced the concepts of public addresses and temporary
addresses. The mobility architecture introduces home addresses and care-of
addresses. In addition, multihoming situations result in more addresses per node.
For example, a node can have multiple interfaces, some of them tunnels or virtual
interfaces, or a site can have multiple ISP attachments with a global prefix per ISP.

The end result is that IPv6 implementations are often faced with multiple possible
source and destination addresses when initiating communication. It is preferred to
have default algorithms, common across all implementations, for selecting source
and destination addresses so that developers and administrators can reason about
and predict the behavior of their systems.

Furthermore, dual-mode stack implementations, which support both IPv6 and
IPv4, very often need to choose between IPv6 and IPv4 when initiating
communication. For example, DNS name resolution might yield both IPv6 and
IPv4 addresses with the network protocol stack having both IPv6 and IPv4 source
addresses available. In these cases, a policy that always prefers IPv6 or always
prefers IPv4 might produce poor results. For example, if a DNS name resolves to a
global IPv6 address and a global IPv4 address. If the node has assigned a global
IPv6 address and a 169.254/16 autoconfigured IPv4 address, then IPv6 is the best
choice for communication because the global address has a similar scope; therefore,
a better chance of success. But if the node has assigned only a link-local IPv6
address and a global IPv4 address, then IPv4 is the best choice for communication
because the scope more closely matches the scope of the destination to which you
are communicating. The destination address selection algorithm solves this with a
unified procedure for choosing among both IPv6 and IPv4 addresses.

Source address selection and destination address selection are discussed separately,
but using a common framework enables the two algorithms together to yield
useful results. The algorithms attempt to choose source and destination addresses
of appropriate scope and configuration status (preferred or deprecated).

Policy table for IPv6 default address selection
The policy table for IPv6 default address selection is a longest-matching prefix
lookup table, much like a routing table. You can configure this table to suit your
environment.

Given an address, a lookup in the policy table produces two values: a precedence
value for the address and a label for the address. In the table, IPv4 addresses are
represented as IPv4-mapped IPv6 addresses. The default policy table for IPv6
default address selection contains the following values.

Table 5. Default policy table for IPv6 default address selection

Prefix Precedence Label

::1/128 50 0

::/0 40 1

2002::/16 30 2

::/96 20 3

40 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|

|
|
|

|
|
|
|

||

|||

|||

|||

|||

|||

Table 5. Default policy table for IPv6 default address selection (continued)

Prefix Precedence Label

::ffff:0.0.0.0/96 10 4

In the table, the prefix values specify the address prefix that is used to select the
policy table entry that best matches a source or destination address; the precedence
values specify how destination addresses are sorted; and the label values specify
whether a given source address prefix is preferred for use with a given destination
address prefix.

This default configuration produces the following results:
v Native source addresses are preferred for use with native destination addresses
v 6to4 source addresses are preferred for use with 6to4 destination addresses
v IPv4-compatible IPv6 source addresses are preferred for use with

IPv4-compatible IPv6 destination addresses (this type of address has been
deprecated)

v Communication using IPv6 addresses is preferred to communication using IPv4
addresses, if matching source addresses are available

You can use the DEFADDRTABLE TCP/IP profile statement to configure the policy
table for IPv6 default address selection to better suit your environment. For
example, you can specify that IPv4 addresses should be preferred over IPv6
addresses.

Default destination address selection
Resolver APIs can return multiple IP addresses as a result of a host name query;
however, many applications use only the first address returned to attempt a
connection or to send a UDP datagram. Therefore, sorting of these IP addresses is
performed by the default destination address selection algorithm.

Establishing connectivity can depend on whether an IPv6 address or an IPv4
address is selected, which makes this sorting function even more important.

Default destination address selection occurs only when the system is enabled for
IPv6 and the application is using the getaddrinfo() API to retrieve IPv6 and/or
IPv4 addresses.

The default destination address selection algorithm sorts a list of destination
addresses and generates a new list. The algorithm sorts together both IPv6 and
IPv4 addresses by a set of rules. Rules are applied, in order, to the first and second
address, choosing a best address. Rules are then applied to this best address and
the third address. This continues until rules have been applied to all addresses and
the entire list of addresses has been sorted. If one of the rules is able to select the
best address between two addresses, remaining rules are bypassed for those two
addresses. Subsequent rules act as tie-breakers for earlier rules. The destination
address selection algorithm attempts to predict what source address is selected by
TCP/IP when the application initiates an outbound connection or sends a
datagram using the destination address. This source address is used for some of
the destination address selection criteria rules. Source address prediction
processing assumes that the application itself does not explicitly specify a source IP
address (using bind or ipv6_pktinfo) when initiating a connection or sending a
datagram. If the application does explicitly specify a source address, then the

Chapter 3. IPv6 protocol 41

|

|||

|||
|

|
|
|
|
|

|

|

|

|
|
|

|
|

|
|
|
|

destination address selected by this algorithm might not be optimal. The decision
the application makes might assume that a different source address is used.

Rules:

1. Avoid unusable destinations.
If one address is reachable (the stack has a route to the particular
address) and the other is unreachable, then place the reachable
destination address prior to the unreachable address.

2. Prefer matching scope.
If the scope of one address matches the scope of its source address and
the other address does not meet this criteria, then the address with the
matching scope is placed before the other destination address.
The scopes of the destination addresses and their associated source
addresses are determined by the high order bits of the address. The
destination address can be a multicast or unicast address. For purposes
of comparing scope, unicast link-local addresses are mapped to
multicast link-local addresses, unicast site-local addresses are mapped to
multicast site-local addresses, and unicast global scope is mapped to
multicast global scope.

3. Avoid deprecated addresses.
If one address is deprecated and the other is non-deprecated, then the
non-deprecated address is placed prior to the other address.

4. Prefer matching label.
If the label of one destination address matches the label of its associated
source address and the label of the other destination address does not
match the label of its associated source address, then the destination
with the matching label is placed before the other address.
See “Policy table for IPv6 default address selection” on page 40 and
“Configuring the policy table for default address selection” on page 45
for information about how labels are associated with destination
addresses.

5. Prefer higher precedence.
If the precedence of one address is higher than the precedence of the
other address, then the address with the higher precedence is placed
before the other destination address.
See “Policy table for IPv6 default address selection” on page 40 and
“Configuring the policy table for default address selection” on page 45
for more information about how precedence values are associated with
destination addresses.

6. Prefer smaller scope.
If the scope of one address is smaller than the scope of the other
address, the address with the smaller scope is placed before the other
destination address.

7. Use the longest matching prefix.
If one destination address has a longer CommonPrefixLength with its
associated source address than the other destination address has with its
source address, then the address with the longer CommonPrefixLength
is placed before the other address.

8. Leave the order unchanged.

42 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

No rule selected a better address of these two addresses; they are
equally good. Choose the first address as the better address of these two
and the order is not changed.

Default source address selection
When the application or upper-layer protocol has not selected a source address for
an outbound IPv6 packet (using bind or ipv6_pktinfo), the default source address
selection algorithm selects one.

The goal of default source address selection is to select the address that is most
likely to allow the packet to reach its destination and to support site renumbering.
The group of candidate addresses consists of the addresses assigned to the
outbound interface (both configured, dynamically generated, or both) or the
addresses configured for the outbound interface's SOURCEVIPA interface. Any
address that is preferred or deprecated is included in the candidate list. The
algorithm is applied to the candidate address list to select the best source address
for the packet. If there is only one address in the list of candidate source addresses,
then that address is used. If there is more than one address in the candidate list,
one is selected by applying the algorithm's rules to the addresses. Rules are
applied, in order, to the first and second address, choosing a best address. Rules
are then applied to this best address and the third address. This continues until
rules have been applied to all addresses. If one of the rules is able to select the best
address between two addresses, remaining rules are bypassed for those two
addresses. Subsequent rules act as tie-breakers for earlier rules.

Rules:

1. Prefer the same address.
If either address is the destination address, choose that address as the
source address and terminate the entire algorithm.

2. Prefer the appropriate scope.
If the scope of one address is preferable to the scope of the other
address, then the address with the better scope is the better address of
these two addresses.
The following are examples of how the scope of one source address
(SA) is preferable to the scope of another source address (SB) for the
given destination address (D).
v Assume that the scope of SA is less than the scope of SB. If the scope

of SA is less than the scope of D, then SB is the best address;
otherwise, SA is the best address.

v Assume that the scope of SB is less than the scope of SA. If the scope
of SB is less than the scope of D, then SA is the best address;
otherwise, SB is the best address.

3. Avoid deprecated addresses.
If one address is deprecated and the other is preferred, then the
preferred address is the better address of the two addresses.

4. Prefer matching label.
If the label of one source address matches the label of the destination
address and the label of the other source address does not match, then
the address with the matching label is placed in front of the other
source address.

Chapter 3. IPv6 protocol 43

|

|
|
|
|

See “Policy table for IPv6 default address selection” on page 40 and
“Configuring the policy table for default address selection” on page 45
for information about how labels are associated with source and
destination addresses.

5. Prefer public addresses over temporary addresses.
If one address is a public address and the other is a temporary address,
determine the preference of the application for public or temporary
addresses by examining the SRCIP statement:
v If the SRCIP statement has a JOBNAME PUBLICADDRS entry for

this application, then the public address is the better address of the
two addresses.

v If the SRCIP statement has a JOBNAME TEMPADDRS entry for this
application, then the temporary address is the better address of the
two addresses.

v If the application has specified the socket option to prefer temporary
addresses and there is not an SRCIP statement with a JOBNAME
PUBLICADDRS entry for the application, then the temporary address
is the better address of the two addresses.

v If none of the previously listed items are true, then the public address
is the better of the two addresses.

6. Use the longest matching prefix.
If one address has a longer common prefix length
(CommonPrefixLength value) with the destination than the other
address, then the address with the longer common prefix length is the
better address of the two addresses.

7. Leave the order unchanged.
No rule selected a better address of these two addresses; they are
equally good. Choose the first address as the better address of the two
addresses.

VIPA considerations with source address selection
If SOURCEVIPA is configured for the outbound interface and the application has
not requested that SOURCEVIPA be ignored (by way of Ignore Source VIPA socket
option), the source address is selected from the SOURCEVIPA interface's addresses.
Otherwise, source address is selected from the outbound interface's addresses.
Note that selection of a Source VIPA address for IPv6 is done differently from IPv4.
It is determined by the SOURCEVIPAINTERFACE parameter configured on the
outbound interface, rather than the order of the HOME list.

When a socket is used to establish a TCP connection to an IPv6 destination or to
send a UDP or RAW IP datagram to an IPv6 destination, the local address of the
socket is determined based on the set of rules listed in Table 6:

Table 6. Source address selection

Source address selection for communication to
IPv6 destinations TCP, UDP, and RAW

IPCONFIG6
NOSOURCEVIPA

1. Is the socket already
bound to a local IPv6
address?

Do not change the local address, use it
as it is.

2. Is the socket unbound
(bound to the unspecified
IP address)?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

44 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

Table 6. Source address selection (continued)

Source address selection for communication to
IPv6 destinations TCP, UDP, and RAW

IPCONFIG6
SOURCEVIPA

1. Is the socket already
bound to a local IPv6
address?

Do not change the local address, use it
as it is.

2. Has setsockopt() with the
NOSOURCEVIPA option
been issued for the socket?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

3. Is there a
SOURCEVIPAINTERFACE
option on the IPv6
INTERFACE definition over
which the IP packet is
about to be sent?

Use the IPv6 source address selection
algorithm to select an IPv6 VIPA
address from the IPv6 virtual interface
pointed to by the
SOURCEVIPAINTERFACE option.

4. Is there no
SOURCEVIPAINTERFACE
option on the IPv6
INTERFACE definition over
which the IP packet is
about to be sent?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

Configuring the policy table for default address selection

You can configure the policy table for default address selection to better suit your
environment by using the DEFADDRTABLE statement.

Before you begin
v Determine whether the default policy table for IPv6 default address selection is

appropriate for your environment. If it is not, determine the appropriate policy
entries. For more information about the policy table for IPv6 default address
selection, including the entries that are in the default table, see “Policy table for
IPv6 default address selection” on page 40.

1. Do one of the following, depending on how you want to configure the table:
v To configure a new policy table for IPv6 default address selection, add a

DEFADDRTABLE block to your TCP/IP profile that contains the appropriate
policy entries.

v To change the policy table that is currently being used for IPv6 default
address selection, create a DEFADDRTABLE block that contains the existing
set of policies (default or configured policies) and update the policy entries
that you want to change.

v To remove all policies that are currently configured and revert to the default
entries, create a DEFADDRTABLE block that does not contain any policies:
DEFADDRTABLE
ENDDEFADDRTABLE

2. Issue the VARY TCPIP,,OBEYFILE command to replace the existing or default
policy entries and to activate the configuration changes.

Example

To prefer using IPv4 addresses over IPv6 addresses, change the precedence of the
::ffff:0.0.0.0/96 prefix to 100:

Chapter 3. IPv6 protocol 45

|

|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|

|
|

DEFADDRTABLE
; Prefix Precedence Label

::1/128 50 0
::/0 40 1
2002::/16 30 2
::/96 20 3
::ffff:0.0.0.0/96 100 4

ENDDEFADDRTABLE

To sort global destinations before link-local destinations, change the policy table to
reverse the existing precedence:
DEFADDRTABLE
; Prefix Precedence Label

::1/128 50 0
::/0 40 1
fe80::/10 33 1
2002::/16 30 2
::/96 20 3
::ffff:0.0.0.0/96 100 4

ENDDEFADDRTABLE

What to do next

After you have configured the policy table for default address selection, you can
display the configured values by issuing the Netstat DEFADDRT/-l command. See
“Displaying the policy table for default address selection” for more information.

Displaying the policy table for default address selection
You can display the entries that are currently configured in the policy table for
default address selection.

Issue the Netstat DEFADDRT/-l command to display the values that are currently
set in the policy table for default address selection. The Netstat DEFADDRT/-l
report is displayed. This report also indicates whether the policy table settings are
the default settings or configured settings. For information about the Netstat
DEFFADDRT statement, see z/OS Communications Server: IP Configuration Reference.
For more information about the Netstat DEFADDRT/-l report, see z/OS
Communications Server: IP System Administrator's Commands.

Enabling IPv6 communication between IPv6 nodes or networks in an
IPv4 environment

Figure 9 shows how to enable communication between IPv6 nodes or networks in
an IPv4 environment:

IPv6

IPv4

IPv6

N N

?

Figure 9. Communicating between IPv6 nodes or networks in an IPv4 environment

46 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|

Tunneling provides a way to use an existing IPv4 routing infrastructure to carry
IPv6 traffic. IPv6 nodes (or networks) that are separated by IPv4 infrastructure can
build a virtual link by configuring a tunnel. IPv6-over-IPv4 tunnels are modeled as
single-hop. In other words, the IPv6 hop limit is decremented by 1 when an IPv6
packet traverses the tunnel. The single-hop model serves to hide the existence of a
tunnel. The tunnel is opaque to the network and is not detectable by network
diagnostic tools such as traceroute.

z/OS Communications Server does not support being a tunnel endpoint. This
means that the z/OS Communications Server stack must have an IPv6 interface
connected to an IPv6 capable router. The router is relied on to handle all tunneling
issues.

For more information, see “Tunneling” on page 125.

Enabling end-to-end communication between IPv4 and IPv6
applications

Figure 10 shows communication between IPv4 and IPv6 applications:

z/OS Communications Server can be an IPv4-only or dual-mode stack.

There is no support for an IPv6-only stack. By default, IPv6-enabled applications
can communicate with both IPv4 and IPv6 peers. A socket option makes an
IPv6-enabled application require all peers to be IPv6. See “Socket option to control
IPv4 and IPv6 communications” on page 93 for detailed information about the
IPV6_V6ONLY socket option.

IPv6 application on a dual-mode stack
An IPv6 application on a dual-mode stack can communicate with IPv4 and IPv6
partners as long as it does not bind to a native IPv6 address. If it binds to a native
IPv6 address, it cannot communicate with an IPv4 partner because the native IPv6
address cannot be converted to an IPv4 address.

If a partner is IPv6, all communication uses IPv6 packets.

If a partner is IPv4, the following occurs:
v Both source and destination are IPv4-mapped IPv6 addresses.

IPv6

IPv4

N

?

IPv6 Web Browser

IPv4 Web Server

Figure 10. Communicating between IPv4 and IPv6 applications

Chapter 3. IPv6 protocol 47

v On inbound, the transport protocol layer maps the IPv4 address to its
corresponding IPv4-mapped IPv6 address before returning to the application
with AF_INET6 addresses.

v On outbound the transport protocol layer converts the IPv4-mapped addresses
to native IPv4 addresses and send IPv4 packets.

IPv4 application on a dual-mode stack
An IPv4 application running on a dual-mode stack can communicate with an IPv4
partner. The source and destination addresses are native IPv4 addresses and the
packet is an IPv4 packet.

If a partner is IPv6 enabled and running on an IPv6-only stack, then
communication fails. The partner has only a native IPv6 address (not an
IPv4-mapped IPv6 address). The native IPv6 address for the partner cannot be
converted into a form that the AF_INET application understands.

Dual mode z/OS IP Server Host

IPv4-only
Server

IPv6-enabled
Server

Transport Layer

IPv4 IPv6

Network
Interfaces

IPv4

IPv4

IPv4-only
IP host

IPv6

IPv6

IPv6-only
IP host

Figure 11. IPv6 application on dual-mode stack

48 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Application layer gateways and protocol translation
When IPv6-only nodes begin to appear in the network, AF_INET6 applications on
these nodes might need to communicate with AF_INET applications. For a
multihomed dual-mode IP host, it is a likely that the host has both IPv4 and IPv6
interfaces over which requests for host-resident applications are received or sent.
IPv4-only (AF_INET sockets) applications are not generally able to communicate
with IPv6 partners, which means that only the IPv4 partners in the IPv4 network
can communicate with those applications; an IPv6 partner cannot.

As soon as IPv6-only hosts are being deployed in a network, applications on those
IPv6-only nodes cannot communicate with the IPv4-only applications on the dual
mode hosts, unless one of multiple migration technologies are implemented either
on intermediate nodes in the network or directly on the dual mode hosts.

Numerous RFCs describe solutions in this area. One solution is a SOCKS64
implementation that works as a Sockets Secure (SOCKS) server that relays

Dual mode z/OS IP Server Host

IPv4-only
Server

IPv6-enabled
Server

TCP, UDP,
and RAW

IPv4 IPv6

Network
Interfaces

IPv4

IPv4

IPv4-only
IP host

IPv6

IPv6

IPv6-only
IP host

Figure 12. IPv4-only application on a dual-mode stack

Chapter 3. IPv6 protocol 49

communication between IPv4 and IPv6 flows. SOCKS is a well-known technology,
and the issues around it are familiar. Servers do not require any changes, but client
applications (or the stack on which the client applications reside) need to be
socksified to be able to reach out through a SOCKS64 server to an IPv4-only
partner.

Other solutions are based on a combination of network address translation, IP-level
protocol translation, and DNS-flow catcher/interpreter. These solutions all have
problems with application-level IP address awareness and end-to-end security.

Requirement: z/OS Communications Server TCP/IP does not provide a SOCKS64
server and does not contain NAT-PT functionality. If an IPv6-only
client requires access to an IPv4-only server running on z/OS, an
external SOCKS64 or NAT-PT node is required to translate the IPv6
packet to a corresponding IPv4 packet and vice versa.

Network address translation
IPv4 NAT translates one IPv4 (private) address into another IPv4 (external)
address. IPv6 NAT-PT translates an IPv4 address into an IPv6 address.

Rules: There are several limitations with NAT-PT:
v All requests and responses pertaining to a session must be routed

through the same NAT-PT translator.
v There is a protocol translation limitation because a number of IPv4 fields

have changed meaning in IPv6. Details of IPv4 to IPv6 protocol
translation can be found in the Stateless IP/ICMP Translation Algorithm
(SIIT) RFC.

v If an application carries the IP address in the payload, ALGs must be
incorporated.

v Lack of end-to-end security. The two end nodes that seek IPSec network
level security must both use IPv4 or IPv6.

v DNS messages and DNSSEC translation. An IPv4 end-node that demands
DNS replies be signed rejects replies that have been tampered with by
NAT-PT.

Considerations for configuring z/OS for IPv6
This topic describes some general considerations for configuring IPv6 on z/OS,
including cases where multiple types of TCP/IP stacks are present.

In this topic, stack or TCP/IP stack is used as a generic term to describe a protocol
stack that can be defined as a UNIX System Services AF_INET Physical File System
(PFS) in the BPXPRMxx parmlib member (for example, z/OS CS TCP/IP).

IPv4-only stack
Some TCP/IP stacks support only IPv4 interfaces and are capable of sending or
receiving only IPv4 packets. These TCP/IP stacks are generally referred to as
IPv4-only stacks, as they support IPv4 but do not support communication over
IPv6 networks.

An IPv4-only stack supports AF_INET socket applications, but does not support
AF_INET6 socket applications.

50 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Restriction: z/OS Communications Server TCP/IP can be started as IPv4-only
stack.

IPv6-only stack
An IPv6-only stack supports IPv6 interfaces, but it does not support IPv4
interfaces. These TCP/IP stacks support AF_INET6 sockets and applications that
use them, as long as the IP addresses that are used are not IPv4-mapped IPv6
addresses. They do not support AF_INET sockets. Applications can send and
receive IPv6 packets by way of an IPv6-only stack, but they cannot send and
receive IPv4 packets.

Restriction: z/OS Communications Server TCP/IP cannot be started as an
IPv6-only stack.

Dual-mode stack
Many IPv6 TCP/IP stacks support both IPv4 and IPv6 interfaces and are capable of
receiving and sending IPv4 and IPv6 packets over the corresponding interfaces.
These TCP/IP stacks are generally referred to as a dual-mode stack IP stacks. This
does not indicate that there are two separate TCP/IP stacks running on such a
node, but it does indicate that the TCP/IP stack has built-in support for both IPv4
and IPv6.

A dual-mode stack supports AF_INET and AF_INET6 socket applications.
AF_INET applications can communicate using IPv4 addresses. IPv6-enabled
applications that use AF_INET6 sockets can communicate using both IPv6
addresses and IPv4 addresses (using the IPv4-mapped IPv6 address format).

Guideline: z/OS Communications Server TCP/IP can be started as a dual-mode
stack.

INET considerations
This topic describes the INET considerations for IPv4-only and dual-mode
IPv4/IPv6 stacks.

IPv4-only stack
An IPv4-only stack supports AF_INET applications, but it does not support
AF_INET6 applications. Start an IPv4-only stack in an integrated sockets
environment in one of the following ways:
v Do not code an AF_INET6 statement in BPXPRMxx. This method is the easier of

the two. When AF_INET6 is not enabled, the underlying TCP/IP stack is started
as an IPv4-only stack, even if it is capable of supporting IPv6.

Restriction: This is the only way to start z/OS Communications Server TCP/IP
as an IPv4-only stack in an integrated sockets environment.

v Run a TCP/IP stack that is not capable of supporting IPv6. When starting a
TCP/IP stack that does not support IPv6, the stack ignores any AF_INET6
definitions that might appear in BPXPRMxx. As a result, the stack is started as
an IPv4-only stack, even when AF_INET6 is coded in BPXPRMxx.

When a TCP/IP stack is started as an IPv4-only stack in an Integrated Sockets
environment, applications can open AF_INET sockets and can only send and
receive IPv4 packets over IPv4 interfaces. However, applications are unable to open
AF_INET6 sockets.

Chapter 3. IPv6 protocol 51

Dual-mode IPv4/IPv6 stack
When both AF_INET and AF_INET6 are coded in BPXPRMxx and a
dual-mode-capable stack is started, both AF_INET and AF_INET6 sockets are
supported by the stack, and applications can send and receive IPv4 and IPv6
packets.

Requirements: To enable AF_INET6 support in an integrated sockets environment,
the following two conditions must exist:
v AF_INET6 must be configured in BPXPRMxx. Note that

AF_INET6 support can be dynamically enabled by configuring
AF_INET6 in BPXPRMxx and then issuing the SETOMVS
RESET= command to activate the new configuration.

v A dual-mode capable stack must be started after AF_INET6 is
configured in BPXPRMxx. If a TCP/IP stack that is capable of
being a dual-mode stack is started before BPXPRMxx is
configured, the stack remains an IPv4-only stack as long as it
remains active; however, if the stack is stopped and then
restarted, it restarts as a dual-mode TCP/IP stack if AF_INET6 is
configured in BPXPRMxx at the time it is restarted.

Requirement: To enable AF_INET6 support for z/OS Communications Server
TCP/IP, z/OS Communications Server TCP/IP must be started as a
dual-mode stack. z/OS Communications Server TCP/IP does not
support being started as an IPv6-only stack. In other words, if
AF_INET6 is coded in BPXPRMxx, AF_INET must also be coded. If
it is not, then the z/OS Communications Server TCP/IP stack fails
to initialize.

Common INET considerations
This topic describes additional INET considerations.

Enabling AF_INET6 support in a Common INET environment
Requirements: To enable AF_INET6 support in a Common INET environment, the
following conditions must exist:
v AF_INET6 must be configured in BPXPRMxx. AF_INET6 support can be

dynamically enabled by configuring AF_INET6 in BPXPRMxx and then issuing
the SETOMVS RESET= command to activate the new configuration.

v At least one dual-mode-capable stack must be started after AF_INET6 is
configured in BPXPRMxx. Note that any dual-mode capable TCP/IP stack
started before configuring BPXPRMxx remains an IPv4-only stack as long as it
remains active. However, if it is stopped and then restarted, it restarts as a
dual-mode TCP/IP stack if AF_INET6 is configured in BPXPRMxx at the time it
is restarted.

Guideline: Do not start some z/OS Communications Server TCP/IP stacks with
AF_INET6 support and some without AF_INET6 support. If AF_INET6 support is
dynamically enabled, you should stop and restart all TCP/IP stacks which were
active when AF_INET6 support was enabled. This allows these TCP/IP stacks to
become dual-mode stacks. After this occurs, all applications which are capable of
opening AF_INET6 sockets should be stopped and restarted. This allows the
restarted applications to communicate over IPv4 and IPv6 networks.

52 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Disabling AF_INET6 support in a Common INET environment
You can disable AF_INET6 support in a Common INET environment in one of two
ways.
v Stop all active dual-mode TCP/IP stacks while IPv4-only stacks remain active.

Applications are no longer able to open AF_INET6 sockets, although they can
continue to use any AF_INET6 sockets that are already open and not bound to
one of the stopped dual-mode TCP/IP stacks. However, applications are able to
open AF_INET sockets.

v Dynamically disable AF_INET6 in BPXPRMxx and stop all active dual-mode
TCP/IP stacks. When restarted, the dual-mode-capable TCP/IP stacks start as
IPv4-only stacks. In effect, this is a subset of the previous case. To disable
AF_INET6 support, issue the SETOMVS RESET= command to set the AF_INET6
MAXSOCKETS value to 0.

Supporting a mixture of dual-mode stacks and IPv4-only
stacks

When AF_INET6 sockets are supported, an IPv6-enabled application can use an
AF_INET6 socket to send and receive data with both IPv4 and IPv6 partners.
When communicating with an IPv6 partner, a native IPv6 address is used. When
communicating with an IPv4 partner, the IPv4 address is encoded as an IPv4-
mapped IPv6 address. When an IPv4-mapped IPv6 address is used on an
AF_INET6 socket, a dual-mode TCP/IP stack realizes the partner is attached to the
IPv4 network and routes packets over IPv4 interfaces.

As long as all TCP/IP stacks started in a Common INET environment provide
native support AF_INET6 sockets, socket calls can be passed directly to the
underlying TCP/IP stack. However, when both dual-mode stacks and IPv4-only
stacks are started in a Common INET environment, the IPv4-only stacks are not
able to process the native AF_INET6 socket calls. As a result, an application which
uses IPv4-mapped IPv6 addresses on an AF_INET6 socket needs transformations
done by Common INET to communicate with partners over any active IPv4-only
stack.

Common INET provides AF_INET6 transformations that allow AF_INET6
applications to communicate with an IPv4 peer over IPv4-only stack. The
AF_INET6 transformations convert AF_INET6 socket calls to the corresponding
AF_INET socket calls before sending them to an IPv4-only stack and converts
AF_INET responses received from the IPv4-only stack to the corresponding
AF_INET6 responses before making them available to the AF_INET6 application.
Even with this transformation, AF_INET6 applications must use IPv4-mapped IPv6
addresses to communicate with IPv4 applications.

Figure 13 on page 54 shows a mixture of dual-mode stacks and IPv4-only stacks:

Chapter 3. IPv6 protocol 53

Configuring a Common INET environment
If a mixture of dual-mode capable stacks and IPv4-only stacks are started in a
Common INET environment, the default stack should be one of the dual-mode
capable stacks. Common INET routes certain requests to the default stack, and this
enables the stack with more functional capability to process these requests.

If AF_INET6 support is dynamically configured in BPXPRMxx, stop and restart all
dual-mode-capable TCP/IP stacks. After the TCP/IP stacks have been stopped and
restarted, stop and restart all IPv6-enabled applications.

AF_INET6
socket

AF_INET6 PFS AF_INET6 PFS AF_INET PFS AF_INET PFS

AF_INET
socket

AF_INET6
Transformations

LFS

CINET

IPv4 Routes

IPv6 Routes

TCP, UDP, and RAW TCP, UDP, and RAW TCP, UDP, and RAW

IPv6

IPv6-only stack
(not supported on z/OS
- at a minimum, an IPv4
loopback address will
always be configured)

Dual Mode z/OS TCP/IP
Stack

IPv4-only TCP/IP Stack
(OEM, ?)

IPv4 and IPv6 IPv4

Network Interfaces Network Interfaces Network Interfaces

Figure 13. Mixing dual-mode and IPv4-only stacks

54 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 4. Configuring support for z/OS

This topic describes the configuration support needed for z/OS and contains the
following topics:
v “Ensure that important features are supported over IPv6”
v “Assess automation and application impacts due to Netstat and message

changes”
v “Determine how remote sites connect to the local host”
v “SNA access” on page 56
v “Avoid using IP addresses for identifying remote hosts” on page 56
v “Using the BIND parameter on the PORT statement” on page 57
v “Security considerations” on page 57
v “Support for scope information” on page 58
v “Enabling IPv6 support” on page 60
v “Resolver processing” on page 62
v “User exits” on page 64
v “Which applications started with inetd are IPv6 enabled?” on page 64
v “IPv6 and SMF records” on page 65
v “IPv6 and the Policy Agent” on page 65
v “IPv6 and SNMP” on page 66
v “Monitoring the TCP/IP network” on page 66
v “Diagnosing problems with IPv6” on page 68

Ensure that important features are supported over IPv6
See Appendix A, “IPv6 support tables,” on page 135 to ensure all needed features
are supported over IPv6.

Assess automation and application impacts due to Netstat and
message changes

Netstat output for stacks that are IPv6-enabled has a different format in order to
accommodate the longer IPv6 address. This becomes an issue when applications
that parse Netstat output are used. The same considerations also apply to
applications which use IP addresses in their automation because IP addresses now
have a longer format.

Determine how remote sites connect to the local host
It is likely that clients that are not connected to a link that is directly attached to a
z/OS image require access to servers that run on that z/OS image. Because z/OS
provides a dual-stack implementation, z/OS can send IPv4 packets to partner
nodes that are connected to the IPv4 network and IPv6 packets to partner nodes
that are connected to the IPv6 network. If the client node is connected to the same
routing infrastructure as the z/OS node, traffic is routed between z/OS and the
client node by way of the native network transport.

© Copyright IBM Corp. 2002, 2010 55

In some cases, the two nodes might not be connected to the same routing
infrastructure. For instance, each node might be attached to distinct IPv6 networks
that are separated by an intermediate IPv4 network. When this occurs, tunneling
might be used to transmit the native IPv6 packets across the IPv4 network. This
allows nodes in the disjoint IPv6 networks to send packets to one another.

z/OS does not support functioning as an endpoint for this type of tunnel.
However, z/OS might route traffic over a tunnel in the intermediate network. In
this case, the tunnel endpoint used by z/OS would be an IPv6/IPv4 router in the
network that supports one of several tunneling protocols. The tunnel endpoint
used by z/OS might be attached to the same LAN to which z/OS attaches or
might be attached to a remote network link. In either case, the presence of the
tunnel endpoint is transparent to z/OS; from the z/OS perspective, traffic is routed
over the native IPv6 network.

SNA access
Both Enterprise Extender and TN3270 allow access to SNA applications over an
IPv6 network as well as an IPv4 network. For both protocols, it is possible to
simultaneously support connectivity over IPv4 and IPv6 networks. Enterprise
Extender uses separate path statements and connection networks for each protocol.
By assigning different weights to Transmission Groups that use different network
protocols, it is possible to have SNA traffic prefer being routed over the IPv6
network or the IPv4 network. For TN3270, the network protocol used is
determined by the remote TN3270 client.

Guideline: For Enterprise Extender and TN3270, use global unicast addresses.
Although link-local addresses might work in certain configurations,
they are not suitable for use when connecting between partner
companies. There are few, if any, IPv6 NAT devices which can perform
the necessary mappings between limited scope addresses and globally
routable addresses and, given the vast number of globally unique IPv6
addresses available, are not necessary.

Avoid using IP addresses for identifying remote hosts
In IPv4 networks, some sites and applications attempt to use the remote IP address
to identify the client node which is connecting. In general, do not do this for IPv4,
because the client address can often be unpredictable, either due to the client using
DHCP to obtain its address or due to the client accessing the server from behind a
NAT (Network Address Translator) device.

In IPv6, the client address is likely to become even more volatile than it is in IPv4
networks. Using Stateless Address Autoconfiguration, a client's address is
dynamically derived from the MAC address of the network adapter used for
connectivity. IPv6 also allows clients to pseudo-randomly generate IP addresses,
referred to as temporary addresses, which can be used for one or more
connections. These temporary addresses can be generated as frequently as the
client desires- once a day, once an hour, or even more frequently. In general, the
temporary addresses are not placed in the DNS, making it impossible to use DNS
to map the IP address to a host name.

Result: The client IP addresses are unpredictable and subject to frequent change. In
addition, it is possible, and even likely, that a server is unable to map the client
address to a host name. If a mechanism to identify the remote host is required,
then a different mechanism (client certificate, password, and so on) should be used

56 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

to identify the remote host. For example, this approach is used by Enterprise
Extender. For IPv6, Enterprise Extender does not support configuring or passing
IPv6 addresses. Instead, it uses host names to identify Enterprise Extender nodes.

Using the BIND parameter on the PORT statement
The PORT statement reserves a port for the use of a particular server. The
statement does not typically distinguish between IPv4 and IPv6; the port is
reserved regardless of which type of address the application uses. The BIND
keyword on the PORT statement allows you to force the INADDR_ANY address,
to listen on a particular IP address. You can now specify an IPv6 address on this
keyword. If you specify an IPv4 address on the BIND keyword, listeners bound to
the INADDR_ANY IP address are converted to the IPv4 address. If you specify an
IPv6 address on the BIND keyword, the address is ignored for IPv4 listeners
bound to the INADDR_ANY IP address. Listeners bound to the IPv6 unspecified
address (in6addr_any), are converted to either an IPv4 address (the IPv4-mapped
form of that address) or an IPv6 address, depending on what you specify with the
BIND keyword.

If you use the BIND option, your server can listen for either IPv4 connections or
IPv6 connections, but not both. To have the same service serve both IPv4 and IPv6
clients, you might need to start two instances of it, one bound to an IPv4 address
and one to an IPv6 address.

With SHAREPORT or SHAREPORTWLM keyword, you can start multiple
instances of the server and have connections automatically load balanced between
them. This function is supported for TCP listeners only. All IPv4 connection
requests are load balanced between the set of IPv4 listeners (including AF_INET6
listeners bound to the IPv6 unspecified address in6addr_any), while all IPv6
connection requests are load balanced between the set of IPv6 listeners. See z/OS
Communications Server: IP Configuration Reference for information about the load
balancing algorithms used by each of these parameters.

Security considerations
On z/OS Communications Server, not all security features that are supported over
an IPv4 transport are enabled when communicating by way of an IPv6 transport.
For instance, IPSec, Network Access Control, Stack and Port Access Control, TLS,
SSL, and Kerberos (Kerberos Version 5 and GSSAPIs) are enabled for both IPv4
and IPv6, whereas Intrusion Detection is enabled for IPv4 but not for IPv6. Refer to
Table 38 on page 139 for a list of features supported for IPv4 or IPv6.

When a security function is supported over IPv4 but not over IPv6, the security
feature is exercised when data is transmitted over the IPv4 transport. This is true
whether the application uses AF_INET or AF_INET6 sockets. However, when an
AF_INET6 socket application communicates over the IPv6 transport, security
features that are supported over IPv4 only are not exercised.

Result: For the same local application, some security features can be exercised
when communicating by way of IPv4, but not when communicating by way of
IPv6.

To avoid creating a potential security exposure, it is important to determine if any
important security features are supported over IPv4 but not over IPv6 prior to

Chapter 4. Configuring support for z/OS 57

enabling AF_INET6 on a given LPAR. If only a subset of applications utilize such a
security feature, then it is sufficient to ensure that those applications communicate
only over the IPv4 transport.

To ensure that the IPv4 transport is used, the following methods are available:
v Verify that the application uses AF_INET sockets. Applications that use AF_INET

sockets are able to communicate only by way of the IPv4 transport.
v Configure the application to bind to an IPv4 address. Applications that bind to

an IPv4 address are able to communicate using the IPv4 transport only.
v Use the BIND parameter on the PORT statement to cause the application to bind

to an IPv4 address.

Support for scope information

Scope information defines an outbound routing interface. Scope information can be
an interface name that you configure or an interface index value that z/OS assigns.
The z/OS resolver supports the inclusion of scope information on host names or
IPv6 addresses that are resolved using getaddrinfo; this support can also return
scope information on host names that are resolved from IPv6 link-local addresses
that are input using getnameinfo. Applications such as Ping, Traceroute, FTP, and
others, use the z/OS resolver getaddrinfo and getnameinfo processing for resolving
host name information and can use this scope information support when
appropriate. Within z/OS, scope information is applicable only to IPv6 link-local
addresses.

Restriction: Scope information that is specified for other IPv6 addresses, or for
host names that resolve to other types of addresses, is ignored. Scope
information that is appended to an IPv4 address is treated as an error.

This resolver capability can be useful in situations where locally attached devices
(for instance, a router) are not yet fully configured and can be reached only using
the link-local IPv6 address that is associated with the interface that connects this
host to the device. It can also be useful if locally attached devices are
malfunctioning or cannot be reached through normal routing mechanisms;
diagnostic efforts are directed over a specific interface to the malfunctioning
device. Finally, in installations that utilize static routing, scope information can be
useful with applications such as FTP and Traceroute for identifying the correct
interface to be used when a local IPv6 addresses is specified as the target address.
For a list of z/OS applications that support use of scope information, see
“Application support of scope information on host name or IP address” on page
136.

For details and restrictions about the z/OS resolver support for scope information
on getaddrinfo and getnameinfo, see “Name and address resolution functions” on
page 81.

For details about the interaction of scope information and advanced IPv6 socket
options for specifying the outgoing interface, see “Options for specifying the
outgoing interface” on page 121.

Considerations for choosing interface name or interface index

The interface index for an interface is assigned by the stack during interface
definition processing; the value remains constant until either the interface is
deleted from the stack or the stack is stopped. The same interface can be assigned

58 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

a different interface index value when the stack is reactivated. Because of this, a
constant value for the interface index for a given interface should not be assumed.

In a CINET environment, the interface index includes a stack identifier (known as
the transport driver index). The transport driver index makes the interface index
for an interface unique across the entire CINET environment, but reduces the
predictability of the interface index value for an interface. Applications or users
that provide scope information on host names should specify an interface name,
instead of an interface index, for more predictable processing. This includes cases
in which host names or IPv6 addresses are specified in a configuration file (such as
the userid.RHOSTS.DATA) that is used to match against command input host
names or IPv6 addresses, or against remote partner host names or IPv6 addresses.
Host names or IPv6 addresses in this situation should also use the interface name,
not the interface index, as the scope information that is coded on the host name or
IPv6 address for matching purposes, because the z/OS resolver returns interface
names by default on getnameinfo calls that involve scope information.

Syntax for specifying scope information

Scope information is specified as part of host name information, in the form
host_identifier%scope_information.

The following guidelines apply when specifying scope information:
v The host_identifier value is the host name or IPv6 link-local address of the host.

Because scope information applies only to IPv6 link-local addresses, and IPv6
link-local addresses are not guaranteed to be unique, DNS host names are not
typically created for IPv6 link-local addresses. Scope information is typically
used as an appendage to a specified IPv6 address but not to an actual host
name.

v The percent (%) character is a delimiter between the host identifier portion and
the scope portion of the input character string.

v The scope_information value is the interface name or interface index used to
identify the local outbound routing interface that is used with the host_identifier.
This value should be an interface name; the name has a maximum length of 16
characters in the z/OS environment. If an interface index is used instead of an
interface name, it must be in decimal format, and it must include the transport
driver index value when operating in a CINET environment. See the
SIOCGIFNAMEINDEX ioctl function call information in z/OS UNIX System
Services Programming: Assembler Callable Services Reference for information about
interface index in a CINET environment.

The following examples show how to specify scope information:
v When the scope information is an interface name, specify:

– ping fe80::9:47:100:112%interfacename

v When the scope information is an interface index, specify:
– ping fe80::9:47:100:112%65541
The decimal value, 65541, represents the hexadecimal interface index value
'00010005'x. The first halfword of the value (the transport driver index value)
indicates which stack under CINET the interface belongs to. The second
halfword contains the interface index value assigned by that stack to represent
this interface.

The combined length of the host_identifier value and the scope_information cannot
exceed 255 characters. This restriction applies to both values that are specified as

Chapter 4. Configuring support for z/OS 59

input and values that are received or displayed as output. If host names are used
for IPv6 link-local addresses, assign host names such that the 255 character
limitation, with scope information appended, is maintained. The getaddrinfo
invocations fail for host names longer than 255 characters, and the getnameinfo
invocations return truncated host name information if the resolved name (and
scope) exceed the 255 character maximum.

Enabling IPv6 support
z/OSCommunications Server can be run as an IPv4-only stack or as a dual-mode
stack (IPv4 and IPv6). The BPXPRMxx parmlib member determines which mode is
used. The following configurations are possible:
v INET IPv4 only
v INET IPv4/IPv6 dual-mode stack
v CINET IPv4 only
v CINET IPv4/IPv6 dual-mode stack

Restriction: After a stack has been started, you must stop and restart the stack to
change the mode of the stack.

You can configure either a single AF_INET or both AF_INET and AF_INET6.
Although coding AF_INET6 alone is not prohibited, TCP/IP does not start because
the master socket is AF_INET and the call to open it fails.

IPv4-only BPXPRMxx sample definition
FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

INET IPv4/IPv6 dual-mode stack BPXPRMxx sample definition

Dual-mode stack support is defined by using two NETWORK statements (one for
AF_INET and one for AF_INET6) in the BPXPRMxx parmlib member. For example:
FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

NETWORK DOMAINNAME(AF_INET6)
DOMAINNUMBER(19)
MAXSOCKETS(3000)
TYPE(INET)

Separate MAXSOCKETS values are supported. The IPv6 default is the IPv4
specified value.

CINET IPv4-only BPXPRMxx sample definition

Multiple TCP/IP stacks in one MVS image or LPAR are only supported by using
Common INET (CINET). Each TCP/IP stack is defined in the BPXPRMxx parmlib
member using a SUBFILESYSTYPE statement. These definitions are identical to
what was used prior to IPv6 support. The following example shows the definitions
for three IPv4-only stacks:

60 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

FILESYSTYPE TYPE(CINET) ENTRYPOINT (BPXTCINT)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(CINET)
INADDRANYPORT(20000)
INADDRANYCOUNT(100)

SUBFILESYSTYPE NAME(TCPCS) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS2) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS3) TYPE(CINET) ENTRYPOINT(EZBPFINI)

CINET IPv4/IPv6 dual-mode stack BPXPRMxx sample definition

Dual-mode stack (IPv4/IPv6) support is defined by using two NETWORK
statements in the BPXPRMxx member. Each TCP/IP stack is defined in the
BPXPRMxx parmlib member with SUBFILESYSTYPE. All z/OS Communications
Server stacks defined under the two NETWORK statements are IPv4 or IPv6
stacks. The following example shows the definitions for three dual (IPv4/IPv6)
stacks:
FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(CINET)
INADDRANYPORT(20000)
INADDRANYCOUNT(100)

NETWORK DOMAINNAME(AF_INET6)
DOMAINNUMBER(19)
MAXSOCKETS(3000)
TYPE(CINET)

SUBFILESYSTYPE NAME(TCPCS) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS2) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS3) TYPE(CINET) ENTRYPOINT(EZBPFINI)

Configuration statements for configuring IPv6 addresses
Use these statements to enable configuration of IPv6 addresses.

BEGINROUTES
Code this statement to add static IPv6 routes to the IP routing table.
BEGINROUTES with IPv6 addresses coded is rejected if the stack is not
enabled for IPv6. The GATEWAY statement does not support IPv6 routes.

DELETE PORT (BIND IP address)
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

INTERFACE
An IPv6-enabled stack still uses DEVICE and LINK to define IPv4
interfaces. However, you cannot use DEVICE and LINK to define IPv6
interfaces. You must use the INTERFACE statement to define IPv6
interfaces. The stack must be enabled for IPv6 to use this statement.

IPCONFIG
A FORMAT keyword has been added to control the format of the
command output if the stack is not enabled for IPv6.

IPCONFIG6
This statement is rejected if the stack is not enabled for IPv6. However, the
SOURCEVIPA option has a dependency on the INTERFACE statement. You
must specify the SOURCEVIPAINTERFACE keyword on the INTERFACE
statement for each interface on which you desire that SOURCEVIPA take
effect.

Chapter 4. Configuring support for z/OS 61

PKTTRACE
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

PORT (BIND IP address)
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

For more information about these statements, see z/OS Communications Server: IP
Configuration Guide.

Resolver processing
IPv6 support introduces several changes to how host name and IP address
resolution is performed. These changes affect several areas of resolver processing,
including:
v New resolver APIs are introduced for IPv6 enabled applications. See “Name and

address resolution functions” on page 81 for more details.
v New DNS resource records are defined to represent hosts with IPv6 addresses;

therefore new, network flows between resolvers and name servers (in place of
DNS IPv4 A records).

v A new algorithm is defined to describe how a resolver needs to sort a list of IP
addresses returned for a multihomed host. See “Default destination address
selection” on page 41 for more information.

v New statements in the resolver configuration files are defined, and new search
orders are implemented for local host tables processing.

Resolver configuration
In order to avoid impacting existing IPv4 queries, the use of /etc/hosts,
HOSTS.LOCAL, HOSTS.SITEINFO, and HOSTS.ADDINFO files continue to be
supported for IPv4 addresses only. The HOSTS.SITEINFO and HOSTS.ADDRINFO
files continue to be generated from HOSTS.LOCAL file by way of the MAKESITE
utility.

ETC.IPNODES is a new local host file (in the style of /etc/hosts) that might
contain both IPv4 and IPv6 addresses. IPv6 addresses can be defined in
ETC.IPNODES only. The introduction of this file allows the administration of local
host files to more closely resemble that of other TCP/IP platforms and eliminates
the requirement of post-processing the files (specifically, MAKESITE).

The following new search order is used for selecting new ETC.IPNODES local host
files for IPv6 searches in MVS and UNIX environments:
1. GLOBALIPNODES
2. RESOLVER_IPNODES environment variable (UNIX only)
3. userid/jobname.ETC.IPNODES
4. hlq.ETC.IPNODES
5. DEFAULTIPNODES
6. /etc/ipnodes

IPv6 search order is simplified, but to minimize migration concerns, the IPv4
search order continues to be supported as in previous releases. The side effect of

62 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

this is that by default, you would be required to maintain two different local host
files (for example, IPv4 addresses in HOSTS.LOCAL, IPv6 and IPv4 addresses in
ETC.IPNODES) for your system.

An easier approach is to use the new COMMONSEARCH statement in the resolver
setup file. By specifying COMMONSEARCH, you indicate that only the new IPv6
search order should be used, regardless of whether the search is for IPv6 or IPv4
resources. This means that only one file (ETC.IPNODES) has to be managed for the
system, and that all the APIs utilize the same single file. The use of
COMMONSEARCH reduces IPv6 and IPv4 searching to a single search order, and
also reduces the UNIX and native MVS environments to a single search order.

For detailed information about search orders, see z/OS Communications Server: IP
Configuration Guide.

IPv4-only configuration statements

The TCPIP.DATA SORTLIST statement is used for sorting IPv4 addresses only; the
default destination address selection algorithm is used to sort IPv6 addresses.

IPv6/IPv4 configuration statements

Use the following statements for IPv6/IPv4 configuration:

COMMONSEARCH/NOCOMMONSEARCH resolver setup statement
Use these statements when a common local host file search order is to be
used or not used. The COMMONSEARCH statement allows the same
search order of local host files be used for an IPv4 or a IPv6 query. It also
allows the same search order to be used in both the native MVS and z/OS
UNIX environments.

DEFAULTIPNODES resolver setup statement
Use this statement to specify the default local host file.

GLOBALIPNODES resolver setup statement
Use this statement to specify the global local host file.

NAMESERVER/NSINTERADDR TCPIP.DATA statement
Use this statement to specify the IPv4 or IPv6 address of a name server.

Resolver communications with the Domain Name System
To retrieve IPv6 data from the correct name server, ensure that the resolver
configuration data set points to name servers that can resolve the IPv6 queries. A
resolver does not have to communicate with a name server over an IPv6 network
in order to retrieve IPv6 Domain Name System (DNS) entries. The z/OS resolver
can use IPv4, IPv6, or both to communicate with a name server.

IPv6 resource records are larger than IPv4 resource records; therefore, DNS
response messages are larger for IPv6 resources than for IPv4 resources. If the
number of resource records in a DNS response message is large, the response
message from the name server might exceed 512 bytes of data. If more than 512
bytes of data is needed to send the message, the message is truncated to fit in 512
bytes of UDP packet data. The resolver then resends the request using TCP
protocols so that the name server can send the entire response message.

To eliminate the performance costs associated with switching from UDP to TCP
protocols, the z/OS resolver can use Extension mechanisms for DNS (EDNS0).

Chapter 4. Configuring support for z/OS 63

|
|

|
|

|
|
|
|
|

EDNS0 uses UDP protocols to accept messages that are greater than 512 bytes,
when the name server that sends the response messages also supports EDNS0. The
z/OS resolver can accept up to 3 072 bytes of DNS response message data in a
single UDP packet. (If the name server does not support EDNS0, responses that are
larger than 512 bytes in length are truncated and resent using TCP protocols.)

The resolver dynamically determines which name servers support EDNS0
processing and modifies the DNS requests that it sends to the name server. If a
name server is upgraded to support EDNS0, the resolver discovers this upgrade
dynamically. The length of time that the discovery process takes depends on the
frequency with which DNS responses are truncated to use UDP protocols. You can
issue the MODIFY REFRESH command to cause the resolver to discover the
upgrade more quickly. See z/OS Communications Server: IP System Administrator's
Commands for the syntax and description of the MODIFY REFRESH command.

User exits
Several TCP/IP applications provide exit facilities that can be used for a variety of
purposes. Several of these exits include IP addresses or SOCKADDR structures as
part of the parameters passed to the exits.

The following exits are available to support IPv6 addresses or SOCKADDR
structures:
v FTP - All FTP exits have been enhanced to support IPv6 addresses except for

FTPSMFEX. Samples for these exits are provided in SEZAINST. See z/OS
Communications Server: New Function Summary for more information on changes
to these exits:
– FTCHKCMD
– FTCHKCM1
– FTCHKCM2
– FTCHKJES
– FTCHKPWD
– FTPOSTPA
– FTPOSTPR

v The TSO remote execution server user exit - RXEXIT.

Which applications started with inetd are IPv6 enabled?
The following z/OS UNIX applications support IPv6 addresses:
v Internet daemon (inetd) server
v Remote execution (orexecd) server
v Remote shell (orshd) server
v Telnet server (otelnetd)

Modifying the inetd.conf file
You must modify the inetd.conf file to support the IPv6-enabled applications. The
z/OS UNIX rsh server and Telnet server support Kerberos for IPv4 connections,
but not for IPv6 connections.

64 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

In the inetd.conf file, specify tcp6 for the protocol of the service name. In order
for the z/OS UNIX servers to support IPv6 connections, you must specify this
option in the inetd.conf file. When you specify tcp6 is defined, IPv4 clients are also
supported.

IPv6 and SMF records
Most of the TCP/IP SMF records currently contain IP addresses as part of their
content. The data in these records is typically processed by programs, some of
which are real-time SMF exits and others that post-process the SMF records after
the records are created. In z/OS V1R2, a new type of TCP/IP SMF record, type
119, was introduced. The type 119 SMF records were created to provide a
standardized structure for all SMF records provided by TCP/IP. This included a
standard representation of IP addresses appearing across all type 119 records in
which IPv4 addresses appear in IPv4-mapped form and IPv6 addresses appear as
is.

Guideline: The type 119 records constitute a superset of the older type 118 records
in terms of data that is available. Users exploiting IPv6 should migrate
to the SMF 119 record.

Type 118 FTP client and server transfer completion records are generated for IPv6
connections. In this case, the FTP records use IP addresses of 255.255.255.255 to
indicate that the address cannot be included. All other type 118 SMF records are
not generated for IPv6 connections.

For more information about SMF records, see z/OS Communications Server: IP
Configuration Guide and z/OS Communications Server: IP Programmer's Guide and
Reference.

IPv6 and the Policy Agent
The Policy Agent supports IPv6 in the following ways:
v Table 7 lists the policy types that support IPv6.
v IPv6 XCF addresses can be specified in a sysplex distributor environment.

Table 7. IPv6 support for different policy types

Policy type IPv6 supported?

AT-TLS Yes

IDS No

IPSec Yes

QoS Yes

Routing No

When IPv6 addresses are used in policies for a given stack, as configured to Policy
Agent using the TcpImage configuration statement, the stack must be IPv6 enabled.
IPv6 policy is installed but is not enforceable in a stack that is not IPv6 enabled. If
the corresponding stack is recycled later with IPv6 enabled, all policies are read
and parsed again. At this point, any policies with IPv6 addresses are enforced.

The use of IPv6 interfaces in QoS policies is problematic, because such interfaces
can be assigned multiple IP addresses. As a result, the only way to specify IPv6
addresses in policies is by interface name. The interface name can also be used for

Chapter 4. Configuring support for z/OS 65

IPv4 interfaces, as well as the IPv4 address. The name specified in the policies for
IPv4 interfaces is the name specified on the LINK statement in the TCP/IP profile.
For IPv6 interfaces, it is the name specified on the INTERFACE statement. IPv6
interfaces can be specified for QoS policies and also for the SetSubnetPrioTosMask
statement or LDAP object.

To support sysplex distributor policy performance monitoring, as specified using
the PolicyPerfMonitorForSDR configuration statement, the Policy Agent needs to
establish TCP connections between the qosCollector threads that run on the
distributing stacks and the qosListener threads that run on the target stacks.
Depending on the sysplex configuration, either one or two connections between
these threads are established. One connection is established for all target stacks
that are configured using IPv4, and one connection is established for all target
stacks configured using IPv6. Because a given target can be configured using both
IPv4 and IPv6, it is possible that two connections are established between a given
qosCollector and qosListener thread. When this occurs, only information related to
distributed IPv4 DVIPAs flows over the IPv4 connection and likewise for the IPv6
connection.

IPv6 and SNMP
The following SNMP components operate over IPv6 networks and handle
IPv6-related management data.
v SNMP agent
v z/OS UNIX snmp/osnmp command
v Trap Forwarder daemon
v Distributed Protocol Interface (DPI®)
v TN3270 Telnet subagent

Requirement: The TCP/IP stack on your system must support IPv6 networking to
take advantage of the IPv6 support offered by these components. If
your system does not support IPv6 networking, then these
applications operate in IPv4 mode.

The TCP/IP subagent supports IPv6 management data in the following MIB
modules:
v IF-MIB from RFC 2233 - Interface data
v IP-MIB from draft-ietf-ipv6-rfc2011-update-04.txt - IP and ICMP data
v IP-FORWARD-MIB from draft-ietf-ipv6-rfc2096-update-05.txt - Route data
v TCP-MIB from draft-ietf-ipv6-rfc2012-update-04.txt - TCP connection data
v UDP-MIB from draft-ietf-ipv6-rfc2013-update-03.txt - UDP endpoint data
v TCP/IP Enterprise-specific MIB (IBMTCPIPMVS-MIB)

See z/OS Communications Server: IP System Administrator's Commands for more
information about the TCP/IP Subagent support.

Monitoring the TCP/IP network
This topic describes how IPv6 affects reports.

66 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

IPv6 and Netstat
v In order to accommodate full IPv6 address information, Netstat reports have

been redesigned. If the TCP/IP stack is IPv6 enabled, reports are displayed in a
different format than with IPv4. This might impact applications that are used to
parse Netstat output. The same considerations apply to applications which use
IP addresses in their automation since IP addresses now have a longer size. If
the TCP/IP stack is not IPv6 enabled, the report format is unchanged unless the
FORMAT LONG parameter is specified on the Netstat command or on the
IPCONFIG PROFILE statement.

v IPv6 statistic information is added to the Netstat STATS/-S report.
v Information regarding whether the stack is IPv6 enabled or not is added to the

Netstat UP/-u report.
v For a server that opens an AF_INET6 socket, binds to the IPv6 unspecified

address (in6addr_any), and does a socketopt with IPv6_V6ONLY against the
socket, the local address information in the connection related reports are
contained the text (IPV6_ONLY).

Netstat ALLCONN/-a example on an IPv6 enabled stack:
MVS TCP/IP NETSTAT CS V1R6 TCPIP NAME: TCPCS 17:40:36
User Id Conn State
------- ---- -----
FTPABC1 00000021 Listen

Local Socket: 0.0.0.0..21
Foreign Socket: 0.0.0.0..0

FTPDV6 00000086 Listen
Local Socket: ::..21 (IPv6_ONLY)
Foreign Socket: ::..0

For more detailed information, see z/OS Communications Server: IP System
Administrator's Commands.

Control of output format
When the stack is IPv6-enabled, the report output is displayed in the new format,
which is referred to as long format.

In order to allow the stack to be configured for IPv4-only operation (not IPv6
enabled and short format displays), but still allow a developer who needs to
modify programs that rely on Netstat output to update and test new versions of
these programs with long format output from Netstat, the following output format
control options are available:

FORMAT SHORT
The output is displayed in the existing IPv4 format.

FORMAT LONG
The output is displayed in the format which supports IPv6 addresses.

A stack-wide output format parameter (FORMAT SHORT/LONG) can be specified
on the IPCONFIG profile statement. It instructs Netstat to produce output in one
of the above formats. FORMAT SHORT is only applicable when the stack is not
IPv6 enabled.

In addition to the stack-wide FORMAT parameter, a Netstat command line option
FORMAT/-M with keyword SHORT/LONG is supported to override the
stack-wide parameter. When a user specifies the Netstat command line format
option, it overrides the stack-wide format parameter on an IPv4-only stack.

Chapter 4. Configuring support for z/OS 67

What has changed?
All Netstat reports have been modified to support IPv6.

The following Netstat report is added to display Neighbor Discovery cache
information:
v Netstat ND/-n

Guideline: The Netstat GATE/-g is not enhanced to support IPv6 routes. Netstat
ROUTE/-r is the suggested alternative.

IPv6 and Ping and Traceroute
Ping and Traceroute provide the following support for IPv6:
v You can use IPv6 IP addresses, or host names that resolve to IPv6 IP addresses,

for destinations. The IP address or host name can include scope information,
which directs the Ping and Tracerte commands to use the specific outbound
interface identified by the appended scope information. See “Support for scope
information” on page 58 for guidelines about using this mechanism.

v You can use IPv6 IP addresses as the source IP address for the command's
outbound packets.

v IPv6 IP addresses or interface names can be used as the outbound interface. This
is analogous to specifying scope information as part of the destination IP
address or host name.

v You can specify the new ADDRTYPE/-A command option to indicate whether
an IPv4 or IPv6 IP address should be returned from host name resolution.

v IPv4-mapped IPv6 IP addresses are not supported for any option value.

Diagnosing problems with IPv6
This topic describes IPv6 problem diagnosis considerations.

IPv6 and IPCS

IPCS formatting has been enhanced for IPv6 for TCPIPCS dump analysis and
CTRACE components SYSTCPIP, SYSTCPDA, and SYSTCPOT. For detailed
information about IPCS, see z/OS Communications Server: IP Diagnosis Guide.

IPv6 and packet and data tracing

Packet trace, data trace, and OSA-Express Network Traffic Analyzer (OSAENTA)
trace functions have been enhanced for IPv6 to allow tracing of IPv6 addresses. For
detailed information about trace functions, see z/OS Communications Server: IP
Diagnosis Guide.

68 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 5. Configuration guidelines

This topic describes IPv6 configuration guidelines and contains the following
topics:
v “Connecting to an IPv6 network”
v “Assigning IPv6 addresses” on page 70
v “Updating DNS definitions” on page 72
v “Using source VIPA” on page 73
v “Using dynamic or static routing to improve network selection” on page 73
v “Connecting to non-local IPv4 locations” on page 74
v “IPv6-only application access to IPv4-only application” on page 74

Connecting to an IPv6 network
z/OS Communications Server TCP/IP supports direct attachment to IPv6 networks
in the following ways:

IPAQENET6 interface type
TCP/IP attaches to an IPv6 LAN by way of OSA-Express in QDIO mode,
using either Fast Ethernet or Gigabit Ethernet. A single physical LAN can
carry both IPv4 and IPv6 packets over the same media. While the physical
network is shared, from a logical view there are two separate LANs, one
carrying IPv4 traffic and one carrying IPv6 traffic. A single OSA-Express
port can be used to carry both IPv4 and IPv6 traffic simultaneously.
TCP/IP supports three CHPID types for IPAQENET6 (OSD, OSX, and
OSM). If your configuration includes OSX or OSM CHPID types, see the
information about TCP/IP in an ensemble in z/OS Communications Server:
IP Configuration Guide for additional considerations for these CHPID types.

MPCPTP6 interface type
TCP/IP can directly communicate with other IPv6 z/OS Communications
Server TCP/IP images, using ESCON® channel-to-channel adapters, XCF
connectivity (if the stacks are in the same sysplex), or the IUTSAMEH
facility (if the stacks are on the same LPAR).

IPAQIDIO6 interface type
TCP/IP can directly communicate with other IPv6 z/OS Communications
Server TCP/IP V1R7 (or later) images and z/Linux images using
HiperSockets connectivity. This applies only to stacks running on the same
central processor complex and running on a zSeries server that supports
IPv6 HiperSockets.

IPCONFIG6 DYNAMICXCF
IPCONFIG6 DYNAMICXCF provides HiperSockets connectivity if
available, XCF connectivity (if the stacks are in the same sysplex), or the
IUTSAMEH facility (if the stacks are on the same LPAR).

Guideline: All of these interface types can be used for LPAR-to-LPAR IPv6
communication, best performance is achieved by using the IPAQIDIO6
interface type (if both stacks meet the criteria previously listed). The
performance of the other interface types varies with the speed of the
underlying media.

© Copyright IBM Corp. 2002, 2010 69

|
|
|
|
|
|
|
|
|
|

For stack-to-stack communications within a single LPAR, the MPCPTP6 interface
type (using IUTSAMEH) provides the best performance.

To transport IPv6 traffic to another host, z/OS TCP/IP must send traffic using
native IPv6 packets. Note that when communicating with another IPv6 host, a
router within the network might tunnel the IPv6 packet across an IPv4 network to
a remote IPv6 LAN or host. However, z/OS Communications Server TCP/IP
cannot be the tunnel endpoint, and the tunneling by an intermediate router is
transparent to z/OS Communications Server TCP/IP.

Assigning IPv6 addresses
When you are assigning IPv6 addresses, use the following guidelines.

Avoid using site-local addresses

Site-local addresses were designed to use private address prefixes that could be
used within a site without the need for a global prefix. Until recently, the full
negative impacts of site-local addresses in the Internet were not fully understood.
Due to problems in the use and deployment of addresses constructed using a
site-local prefix, the IETF has deprecated the special treatment given to the
site-local prefix. An IPv6 address constructed using a site-local prefix is now
treated as a global unicast address. The site-local prefix can be reassigned for other
use by future IETF standards action.

Guideline: Use unique local addresses or global unicast addresses instead of
site-local addresses.

Defining the interface ID for physical interfaces

If you do not manually configure the interface ID, the system selects an interface
ID for you, using a random value (on an MPCPTP6 interface), a value derived
from the MAC address (on an IPAQENET6 interface), or a value derived from the
IQD CHPID (on an IPAQIDIO6 interface). To simplify the configuration effort, let
the system select the interface ID. In some cases, though, it is necessary or
desirable to control all IPv6 addresses which are assigned to a physical adapter.
This might be useful if other IPv6 nodes need to define static routes to this host, or
if you use IPv6 addresses in Multi-Level Security policies.

Use stateless address autoconfiguration for physical interfaces

IPv6 addresses for physical interfaces can be manually defined or can be
automatically assigned by stateless address autoconfiguration. Use the stateless
address autoconfiguration for this assignment. Using stateless address
autoconfiguration reduces the amount of definition required to enable IPv6
support, while making future site renumbering easier.

Use VIPAs

Using static VIPAs removes hardware as a single point of failure for connections
being routed over the failed hardware. If you are not using dynamic routing,
configure at least one static VIPA for each LAN to which z/OS Communications
Server TCP/IP is connected. Each VIPA configured this way should be associated
with all physical adapters connected to that same LAN.

70 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Requirement: Static VIPAs must be manually configured; z/OS Communications
Server TCP/IP does not support stateless address autoconfiguration for VIPAs.

Dynamic VIPAs (DVIPAs) can also be used in an IPV6 network. The decision to
use DVIPAs in an IPv6 network is similar to the decision to use DVIPAs in an IPv4
network. For detailed information, see z/OS Communications Server: IP Configuration
Guide.

Selecting the network prefix

z/OS Communications Server TCP/IP does not perform duplicate address
detection for VIPAs, because they are not assigned to a physical interface attached
to the LAN.

Guideline: To avoid possible address collisions, the network prefix used for static
VIPAs should be different from the network prefix used for physical
interfaces (either manually configured or autoconfigured using stateless
address autoconfiguration).

If either the IPv6 OSPF or IPv6 RIP dynamic routing protocol of OMPROUTE is
being used, the network prefix for a static VIPA should not be the same as any
prefix defined as on-link on a physical link. The VIPA can then be associated with
interfaces attached to any physical link, thus enabling maximum redundancy. This
association between VIPAs and interfaces attached to physical links is
accomplished using the SOURCEVIPAINTERFACE parameter of the INTERFACE
statement for the interface attached to the physical link.

If IPv6 OSPF or IPv6 RIP dynamic routing protocol of OMPROUTE is not being
used, the network prefix for a static VIPA should be selected from the set of
prefixes which are advertised by way of router discovery by one or more routers
attached to the LAN. The prefix should be advertised as on-link and not to be used
for address autoconfiguration. By using an on-link prefix, hosts and routers
attached to the LAN use neighbor discovery address resolution to obtain a
link-layer address for the VIPA. z/OS Communications Server TCP/IP selects a
link-layer address of an attached physical interface when responding to the query,
and the attached host or router forwards the packet to z/OS Communications
Server TCP/IP. This eliminates the need to define static routes for VIPAs at hosts
and routers attached to the same LAN as z/OS Communications Server TCP/IP.
By using a prefix that is not being used for address autoconfiguration, the network
prefix is not used by hosts for autoconfiguring addresses for physical interfaces.

Selecting the interface identifier

The VIPA interface identifier must be unique among all IP addresses that are
created using the combination of network prefix and interface identifier. Any
scheme can be used in generating the interface identifiers, as long as they are
unique. By using a network prefix that is not used by stateless address
autoconfiguration, it is only necessary to ensure the interface identifier is unique
among all VIPAs that are sharing the same network prefix.

Effects of site renumbering on static VIPAs

When renumbering a site, new network prefixes are assigned to subnetworks. The
existing network prefixes are marked as deprecated, during which time either the

Chapter 5. Configuration guidelines 71

new prefixes or the old, deprecated prefixes can be used. After some time period,
the deprecated network prefixes are deleted, along with all IPv6 addresses which
use the network prefix.

For autoconfigured addresses, this process is automatically managed by stateless
address autoconfiguration algorithms. For manually defined addresses, including
all VIPAs, the process must be managed manually. When a prefix is to be
deprecated, addresses that use the prefix should be deprecated using the
INTERFACE DEPRADDR statement. After the prefix has expired, addresses that
use the prefix should be deleted using the INTERFACE DELADDR statement.

Updating DNS definitions
This topic describes considerations for updating DNS definitions.

Including static VIPAs in DNS
Include static VIPAs in DNS, in both the forward and reverse zones. If VIPAs are
used, it is unnecessary to include IPv6 addresses assigned to interfaces.

Requirement: IPv6 Enterprise Extender requires that host-name resolution be used
for the static VIPA. This host-name resolution can be from a DNS or
a local hosts file (/etc/ipnodes).

Defining IPv4-only host names and IPv4/IPv6 host names
In general, IPv6 connectivity between two hosts is preferred over IPv4 connectivity.
In many cases, IPv4 is used only if one of the nodes does not support IPv6. This
can lead to undesirable paths in the network being used for communication
between two hosts. For instance, when a native IPv6 path does not exist, data can
be tunneled over the IPv4 network, even when a native IPv4 path exists.

This can lead to longer connection establishment to an AF_INET application which
resides on a dual-stack host. The client first attempts to connect using each IPv6
address defined for the dual-stack host before attempting to connect with IPv4. A
well-behaved client cycles through all the addresses returned and ultimately,
connects using IPv4. However, this takes both time and network resources to
accomplish, and not all clients are well-behaved or bug-free.

To avoid undesirable tunneling, as well as other potential problems, configure two
host names in DNS. The existing host name should continue to be used for IPv4
connectivity, so as to minimize disruption when connecting to unmodified
AF_INET server applications. A new host name should also be defined, for which
both IPv4 and IPv6 should be configured. When connecting using the old host
name, AF_INET6 clients connect using IPv4. When connecting using the new host
name, AF_INET6 clients attempt to connect using IPv6 and, if that fails, falls back
and connects using IPv4.

Using two host names allows the client to choose the network path that is taken.
The client can route over IPv6 when the destination application is IPv6 enabled
and a native IPv6 path exists, or take an IPv4 path.

The use of distinct host names for IPv4 and IPv4/IPv6 addresses is not strictly
required. A single host name can be used to resolve to both IPv4 and IPv6
addresses. In addition, the use of distinct host names is only necessary during the

72 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

initial transition phase when native IPv6 connectivity does not exist and
applications have not yet been enabled for IPv6. After both of these occur, a single
host name can be used.

Using source VIPA
Use a VIPA, either static or dynamic, as the source IP address on IPv6 hosts. When
you use a VIPA, an IPv6 address can be resolved to a host name.

Define the VIPA using any of the following available configuration statements:
v SOURCEVIPAINT parameter on the INTERFACE statement
v TCPSTACKSOURCEVIPA parameter on the IPCONFIG6 statement
v SRCIP statement

See z/OS Communications Server: IP Configuration Guide for additional information
about choosing an appropriate method for specifying a source VIPA.

Results

If you have also implemented the guidelines in “Updating DNS definitions” on
page 72, an IPv6 address can be resolved to a host name.

Using dynamic or static routing to improve network selection
You can use the IPv6 OSPF or IPv6 RIP dynamic routing protocol provided by the
OMPROUTE routing daemon to provide information about the IPv6 prefixes and
hosts that can be accessed indirectly by way of adjacent routers. You can use IPv6
OSPF or IPv6 RIP, either alone or together with IPv6 router discovery, to provide
complete routing information.

For routing considerations for interfaces that use the OSX CHPID type, see the
information about OMPROUTE considerations for an intraensemble data network
in z/OS Communications Server: IP Configuration Guide.

When both of the following statements are true, only default routes are available
for accessing hosts that are not on directly attached links:
v Neither the IPv6 OSPF dynamic routing protocol nor the IPv6 RIP dynamic

routing protocol of OMPROUTE is being used.
v Adjacent routers are not including indirect prefix routes (using the Route

Information option as described in RFC 4191 Default Router Preferences and
More-Specific Routes) in their router advertisement messages.

If the TCP/IP stack uses a non-optimal router when data is sent to one of these
hosts, that router can send a redirect message that indicates a more optimal router
for future use, as long as the more optimal router is on the same LAN as the
original router.

When the TCP/IP stack is connected to multiple LANs, this processing might
result in the following situations:
v A non-optimal router is used
v A router is used that cannot reach the final destination

For example, if the stack selects a router on one LAN, but the optimal router is on
another LAN, the router on the first LAN cannot redirect the stack to the router

Chapter 5. Configuration guidelines 73

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

that is on the second LAN. In this case, configure a static route so that the stack
can initially select the optimal network path.

Guidelines: When you are defining static routes, use the following guidelines:
v Use subnet routes instead of host routes

Remote IP addresses are difficult to predict. When using extensions
to stateless address autoconfiguration, some clients can change their
IP addresses on a routine basis, such as once an hour or once a day.
In addition, these addresses can be created using cryptographic
algorithms, making it difficult to impossible to predict which IP
address a client might use. Defining static host routes to be used
when communicating with such a client is equally as difficult or
impossible.
Instead of defining a host route, define subnet routes. The network
prefixes used in generating IPv6 addresses are much more stable
than the interface identifiers used by hosts, typically changing only
when a site is renumbered.

v Use the link-local address of gateway router
When you are defining the gateway router for a static route, use the
link-local address for the router. Link-local addresses do not change
as the result of site renumbering, which minimizes potential
updates to the static routes. This is required in order to honor and
process an ICMPv6 redirect message.

v Effects of site renumbering on static routes
When a remote site is renumbered, new network prefixes are
defined for the remote site and the old network prefixes are
deprecated. After a time period, the old network prefixes are
deleted.
A static route to a remote subnet should be created when a prefix is
defined and should remain as long as the prefix is either preferred
or deprecated. Only when the remote prefix is deleted should the
static route be deleted.

Connecting to non-local IPv4 locations
If native IPv6 connectivity does not exist between two IPv6 sites, IPv6 over IPv4
tunneling can be used to provide IPv6 connectivity to the two sites. z/OS
Communications Server TCP/IP can make use of an IPv6 over IPv4 tunnel to send
packets to a remote site, but cannot be used as a tunnel endpoint itself. Instead, an
intermediate router which supports IPv6 over IPv4 tunneling must act as the
tunnel endpoint.

See “Enabling IPv6 communication between IPv6 nodes or networks in an IPv4
environment” on page 46 for more information on IPv6 over IPv4 tunnels.

IPv6-only application access to IPv4-only application
When an IPv6-only application needs to communicate with an IPv4-only host or
application, some form of IPv6-to-IPv4 translation or application-layer gateway
must occur. If needed, an outboard protocol translator or application-layer gateway
component must be used, as z/OS Communications Server TCP/IP does not
include such support. There are various technologies which can be used, such as
NAT-PT or SOCKS64. See “Application layer gateways and protocol translation”
on page 49 for more information.

74 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|

Chapter 6. API support

This topic describes API support and contains the following topics:
v “UNIX socket APIs” on page 76
v “Native TCP/IP socket APIs” on page 76

z/OS provides a versatile and diverse set of socket API libraries to support the
various z/OS application environments. Figure 14 illustrates the relationship of the
various z/OS socket APIs and the level of IPv6 present for each API.

The following are the two main socket API execution environments in z/OS:
v UNIX [implemented by UNIX System Services (Language Environment®)]
v Native TCP/IP (implemented by TCP/IP in z/OS Communications Server)

There are several higher level C/C++ APIs that rely on the TCP/IP sockets for
communications over an IP network, including the following:
v Resource Reservation Setup Protocol API (RAPI)
v Sun and NCS Remote Procedure Call (RPC)
v X Window System and Motif
v X/Open Transport Interface (XTI)

These APIs do not support IPv6 communications.

Guideline: CICS® programs written to use the IP CICS C Sockets API must use
the TCP/IP C headers. Include the following definition to expose the
required IPv6 structures, macros, and definitions in the header files:
#define __CICS_IPV6

UNIX System Services Callable BPX Sockets

P
as

ca
l A

P
I

TCP, UDP, and RAW Transport Protocol Layer

IPv4 and IPv6 Networking Protocol Layer

Network Interface Layer

Legend

APIs that will likely not be enabled for IPv6

APIs that are not currently enabled for IPv6
but will likely be enabled in a future release

APIs that are enabled for IPv6

CICS
sockets

R
E

X
X

 S
o

ck
et

s IMS
sockets

Sockets Extended Call API

Sockets Extended Macro API (EZASMI)

CS TCP/IP
C Sockets

UNIX
Language

Environment
C/C++ Sockets

Application Programs and Subsystems

Figure 14. z/OS socket APIs

© Copyright IBM Corp. 2002, 2010 75

See z/OS Communications Server: IP CICS Sockets Guide for information about using
the IP CICS C Sockets API.

UNIX socket APIs
The UNIX socket APIs that support both IPv4 and IPv6 communications are z/OS
UNIX Assembler Callable Services and z/OS C sockets.

z/OS UNIX Assembler Callable Services

z/OS UNIX Assembler Callable Services is a generalized call-based interface to
z/OS UNIX IP sockets programming. This API supports both IPv4 and IPv6
communications. It includes support for the basic IPv6 API features and for a
subset of the advanced IPv6 API features. For more information, see z/OS UNIX
System Services Programming: Assembler Callable Services Reference.

z/OS C sockets

z/OS UNIX C sockets is used in the z/OS UNIX environment. Programmers use
this API to create applications that conform to the POSIX or XPG4 standard (a
UNIX specification). This API supports both IPv4 and IPv6 communications. It
includes support for the basic IPv6 API features and for a subset of the advanced
IPv6 API features. For more information about this API, see z/OS XL C/C++
Run-Time Library Reference.

Native TCP/IP socket APIs
The following TCP/IP Services APIs are included in this library.
v Sockets extended macro API
v Sockets extended call instruction API
v REXX sockets
v CICS sockets
v IMS™ sockets
v Pascal API
v TCP/IP C/C++ Sockets

For more information about these APIs, excluding CICS, see z/OS Communications
Server: IP Sockets Application Programming Interface Guide and Reference.

Sockets Extended macro API

The Sockets Extended macro API is a generalized assembler macro-based interface
to IP socket programming. It includes support for IPv4 and for the basic IPv6
socket API functions.

Sockets Extended Call Instruction API

The Sockets Extended Call Instruction API is a generalized call-based interface to
IP sockets programming. It includes support for IPv4 and for the basic IPv6 socket
API functions.

76 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

REXX sockets

The REXX sockets programming interface implements facilities for IP socket
communication directly from REXX programs by way of an address rxsocket
function. It includes support for IPv4 and for the basic IPv6 socket API functions.

CICS sockets

Using the CICS socket interface, you can write CICS applications that act as clients
or servers in a TCP/IP-based network. You can write applications in C language,
using the C sockets programming interface, or in COBOL, PL/I, or assemble, using
the Extended Sockets programming interface. This API supports TCP/IP
communications over IPv4 and basic IPv6 socket API functions. For more
information, see z/OS Communications Server: IP CICS Sockets Guide.

IMS sockets

The Information Management System (IMS) socket interface supports development
of client/server applications in which one part of the application executes on a
TCP/IP-connected host and the other part runs as an IMS application program.
The programming interface used by both application parts is the socket
programming interface. This API currently supports TCP/IP communications over
IPv4 only, but will probably support IPv6 communications in a future release. For
more information, see z/OS Communications Server: IP IMS Sockets Guide.

Pascal API

The Pascal socket application programming interface enables you to develop
TCP/IP applications in the Pascal language. It supports only TCP/IP
communications over IPv4. It is unlikely that this API will be enhanced to support
IPv6 in the future. Applications using this API are encouraged to migrate their
application to one of the other socket APIs that are IPv6 enabled.

TCP/IP C/C++ Sockets

The C/C++ Socket interface supports IPv4 socket function calls that can be
invoked from C/C++ programs. This API is very similar to the UNIX C socket API
that is the recommended socket API for C/C++ application development on z/OS.
The TCP/IP C/C++ sockets API will not be enhanced for IPv6 support. Existing
applications that will be enabled for IPv6 should consider migrating to the UNIX C
socket API.

Chapter 6. API support 77

78 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 7. Basic socket API extensions for IPv6

IPv4 addresses are 32 bits long, but IPv6 interfaces are identified by 128-bit
addresses. The socket interface makes the size of an IP address visible to an
application; virtually all TCP/IP applications using sockets have knowledge of the
size of an IP address. Those parts of the API that expose the addresses must be
changed to accommodate the larger IPv6 address size. IPv6 also introduces new
features, some of which must be made visible to applications by way of the API.

This topic describes the basic extensions to the socket interface and new features of
IPv6 as described in the Internet Engineering Task Force (IETF) RFC 3493, Basic
Socket Interface Extensions for IPv6. and contains the following topics:
v “Design considerations”
v “Name and address resolution functions” on page 81
v “Interface identification” on page 89
v “Socket options to support IPv6” on page 89

Note: All examples in this topic are shown using UNIX Language Environment C;
see z/OS XL C/C++ Run-Time Library Reference for details.

Design considerations
The two main programming tasks associated with IPv6 exploitation involve
migrating existing application programs to support IPv6 and designing new
programs for IPv6. In both cases, the changed or new code should be designed so
that it is capable of using IPv4 or IPv6 addresses. Servers should be designed so
that they can communicate with both IPv4 and IPv6 clients. Existing IPv4 client
and server programs should continue to operate properly as long as only IPv4
connectivity is required between clients and servers.

The following topics describe key differences between IPv4 and IPv6.

Requirement: You must have a basic knowledge of IPv4 socket programming for
clients and servers.

Protocol families
IPv4 socket applications use a AF_INET (equivalent to PF_INET) protocol family.
For IPv6, a new protocol family of AF_INET6 (equivalent to PF_INET6) has been
defined. The protocol family is the first parameter to the socket() function that is
used to obtain a socket descriptor. For most applications, an AF_INET6 socket can
be used to communicate with IPv4 and IPv6 clients.

Address families
Most socket functions require a socket descriptor and a generic socket address
structure called a sockaddr. The exact format of the sockaddr structure depends on
the address family. For IPv4 sockets, the sockaddr structure is sockaddr_in. For
IPv6, the sockaddr structure sockaddr_in6 is used.

The following socket functions have a sockaddr structure as one of their
parameters:

© Copyright IBM Corp. 2002, 2010 79

bind()

connect()

sendmsg()

sendto()

accept()

recvfrom()

recvmsg()

getpeername()

getsockname()

The sockaddr structure that is used in these functions must be the proper structure
for the socket family.

For IPv4 (AF_INET), the sockaddr (sockaddr_in) contains the information shown in
Table 8.

Table 8. sockaddr format for AF_INET

sockaddr length 1 byte Not used, should be set to 0

family 1 byte AF_INET

port 2 bytes TCP or UDP port number

IP address 4 bytes IPv4 IP address

reserved bytes 8 bytes Not used

For IPv6 (AF_INET6), the sockaddr (sockaddr_in6) contains additional information.
Also, note that the IP address for IPv6 is 16 bytes long instead of 4 bytes long as in
IPv4.

Table 9. sockaddr format for AF_INET6

sockaddr length 1 byte Not used, should be set to 0

family 1 byte AF_INET6

port 2 bytes TCP or UDP port number (same as v4)

flowinfo 4 bytes Flow information

IP address 16 bytes IPv6 IPaddress

scope ID 4 bytes Used to determine IP address scope

Special IP addresses
Like IPv4, IPv6 also defines loopback and wildcard (INADDR_ANY) addresses.
The differences are shown in Table 10.

Table 10. Special IP addresses

IPv4 IPv6

Loopback address 127.0.0.1 ::1 (15 bytes of zeros, 1 byte of 1)

Wildcard address 0.0.0.0 :: (16 bytes of zeros)

Multicast address 224.0.0.1 - 239.255.255.255 Refer to “Multicast IPv6 Addresses”
on page 14

80 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Name and address resolution functions
IPv6 introduces new APIs for the Resolver function. These APIs allow applications
to resolve host names to IP addresses and vice versa. The primary new APIs are
getaddrinfo, getnameinfo, and freeaddrinfo. The APIs are designed to work with
both IPv4 and IPv6 addressing. The use of these new APIs should be considered if
an application is being designed for eventual use in an IPv6 environment.

The way in which hostname (getaddrinfo) or IP address (getnameinfo) resolution is
performed depends on the Resolver specifications contained in the Resolver setup
files and TCPIP.DATA configuration files. These specifications determine whether
the APIs query a name server first, then search the local host tables, or whether the
order is reversed, or even if one of the steps is eliminated completely. The
specifications also control, if local host tables have to be searched, which tables that
are accessed. For detailed information about Resolver setup, see “Resolver
configuration” on page 62.

Protocol-independent nodename and service name translation
The getaddrinfo function is conceptually a replacement for the existing
gethostbyname and getservbyname APIs. The getaddrinfo takes an input host
name, or an input service name, or both, and returns (when resolution is
successful) one or more addrinfo structures. The getaddrinfo function can also
accept as input, a host name or a service name in numeric form, and returns the
same value in presentation form using the addrinfo structure. An addrinfo
structure contains the following output information:
v A pointer to a sockaddr_in or sockaddr_in6 structure containing an IP address

and service port. For IPv6 link-local addresses, the sockaddr_in6 structure might
contain the zone index, if scope information was provided as part of the input
host name. See “Scope information on getaddrinfo calls” on page 86 for details.

v Length of sockaddr structure and family type (AF_INET, AF_INET6) of the
sockaddr structure

v Socktype and protocol values usable with this sockaddr structure
v Pointer to canonical name associated with the input host name (applicable only

in the first addrinfo structure)
v Pointer to next addrinfo structure (set to 0 in the last element of the chain)

The storage for the addrinfo structures is allocated by the resolver from the
application's address space, and the application should use the freeaddrinfo API to
release the addrinfo structures when the information is no longer required. The
application should not manipulate the chain of addrinfo structures returned by
way of getaddrinfo, but rather that the application simply return the entire chain,
as received, back to the resolver by way of freeaddrinfo.

In addition to hostname or servicename, one of which must be present on a valid
getaddrinfo invocation, the application can specify additional input to the resolver
on the getaddrinfo invocation. This input is optional, and if specified, is passed by
way of an input addrinfo structure. The input settings include the following
possibilities:
v Family type of sockaddr structure required on output.
v Socktype and protocol values for which the returned IP address and port

number must work. This would be used primarily for cases where a service
name was being resolved, as might typically have been done previously by way
of getservbyname.

Chapter 7. Basic socket API extensions for IPv6 81

v Various input flag settings include the following:
– AI_ADDRCONFIG
– AI_ALL
– AI_CANONNAME
– AI_NUMERICHOST
– AI_NUMERICSERV
– AI_PASSIVE
– AI_V4MAPPED

In the absence of any specific input from the application, the resolver assumes that
any sockaddr type is acceptable (that is, both IPv4 and IPv6 addresses) as output.
Thus, by default, the resolver searches for both IPv6 and IPv4 address by way of
DNS or by way of local host files (such as /etc/hosts). Obviously, this might not
always be the best choice for the application issuing getaddrinfo. By using the
above input fields, an application issuing getaddrinfo() can influence the
processing performed by the Resolver function for that given request in the
following ways:
v The application can specify that the sockaddr returned by getaddrinfo should be

of family type AF_INET, AF_INET6 or AF_UNSPEC (meaning either family type
would be acceptable). For example, if AF_INET is specified, the resolver does
not perform any searches for IPv6 addresses for hostname, because the output
requested must be an IPv4 address.

v The application can specify the following:
– Both IPv6 and IPv4 addresses should be returned
– IPv4 should be returned only if there are no IPv6 addresses resolved
– Only IPv6 addresses should be returned
– Only IPv4 addresses should be returned.

This information, indicated by the input combination of family type and the
AI_ALL and AI_V4MAPPED flags, to a large extent controls the types of
searches performed by the Resolver during the course of the processing.

v The application can specify that IPv6 addresses should be returned only when
the system has IPv6 interfaces defined and can specify that IPv4 addresses
should be returned only when IPv4 interfaces are defined. This preference,
indicated by way of the AI_ADDRCONFIG flag, allows the application to
eliminate resolution searches looking for addresses that cannot be used by the
application.

v The application can specify whether the sockaddr returned should contain an
address for passive (that is, the INADDR_ANY address) or active (that is, the
loopback address) socket activation. This choice is indicated by way of the
AI_PASSIVE flag, and is applicable only in the absence of an input hostname
value.

v The application can specify that only translation from presentation to numeric
format should be performed for hostname, or service name, or both. This option
is indicated by setting the AI_NUMERICHOST flag (for hostname) or the
AI_NUMERICSERV (for servicename) flag, which indicate that the associated
input value must be in numeric format or the getaddrinfo request should be
failed.

v The application can specify that only a given socktype or protocol value should
be used for looking up the port number associated with the input servicename,

82 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

or can request that all valid socktypes and protocols (TCP and UDP) be used for
the getservbyname processing. This preference is indicated by way of the
socktype and protocol settings.

With such a flexible interface, the application programmer must decide what
inputs are reasonable for the capabilities of the application being created or
modified. The most likely application uses are the following.

Table 11 shows the two most likely application usages and the suggested
getaddrinfo input settings that coincide with that functionality:
v IPv6-capable when the underlying system is IPv6 capable
v IPv4-capable only

Table 11. Getaddrinfo application capabilities 1

Application
capabilities

Sockaddr
family to
request Additional flags to set Expected outputs

(IPv4 only)
Application is
pure IPv4 and
cannot handle
any IPv6
addresses.

AF_INET AI_ADDRCONFIG Getaddrinfo returns one or more addrinfo
structures, each pointing to an IPv4 address
saved in an AF_INET sockaddr. No addrinfos
are returned if there is no IPv4 interfaces
defined on the system. No searches of any kind
are performed for IPv6 addresses as part of this
request.

(IPv6 capable)
Application wants
all known
addresses for
hostname, in IPv6
format when the
system supports
IPv6, or in IPv4
format otherwise.

AF_UNSPEC One of the following groups:

v AI_ADDRCONFIG and
AI_ALL

v AI_ADDRCONFIG,
AI_V4MAPPED, and
AI_ALL

Getaddrinfo returns one or more addrinfo
structures, each pointing to a sockaddr
structure. The sockaddrs consists of one of the
following sets:

v All AF_INET6 sockaddrs, containing IPv6 or
mapped IPv4 addresses, if the system
supports IPv6 processing (only when
AI_V4MAPPED coded).

v AF_INET6 sockaddrs, containing IPv6
addresses, and AF_INET sockaddrs,
containing IPv4 addresses, if the system
supports IPv6 processing (only when
AI_V4MAPPED is NOT coded).

v All AF_INET sockaddrs, containing IPv4
addresses, if the system does not support
IPv6 processing.

In all cases, the IPv6 addresses are returned
only if there is an IPv6 interface defined on the
system, and the IPv4 addresses are returned
only if there is an IPv4 interface defined.

An application with no interest in utilizing IPv6 wants to utilize the first entry in
Table 11; otherwise, if there is some interest in utilizing IPv6 functionality, an
application would achieve the greatest flexibility by using the second table entry.
Using the IPv6 entry approach, the application places the burden of supplying a
workable sockaddr structure on the Resolver logic. If IPv6 is supported on the
system, the Resolver endeavors to return AF_INET6 sockaddrs to the application;
otherwise, the Resolver returns AF_INET sockaddrs to the application. The choice
of coding or not coding AI_V4MAPPED in this situation depends on the

Chapter 7. Basic socket API extensions for IPv6 83

application's preference regarding receiving AF_INET6 sockaddrs: the more the
application wants to deal exclusively with AF_INET6 sockaddrs, the more reason
to code AI_V4MAPPED.

Table 11 on page 83 should be sufficient for most application usages. However,
there are other likely application capability models possible, and Table 12 provides
some guidance on how to code the Getaddrinfo invocations for those applications.

Table 12. Getaddrinfo application capabilities 2

Application
capabilities

Sockaddr family
to request Additional flags to set Expected outputs

Application is pure
IPv6 and cannot
handle any mapped
IPv4 addresses.

AF_INET6 AI_ADDRCONFIG Getaddrinfo returns one or more addrinfo
structures, each pointing to an IPv6 address
saved in an AF_INET6 sockaddr. No addrinfos
is returned if there is no IPv6 interfaces defined
on the system. No searches of any kind are
performed for IPv4 addresses as part of this
request.

Application prefers
IPv6 addresses,
requires IPv6
address format, but
can handle mapped
IPv4 addresses if
necessary.

AF_INET6 AI_ADDRCONFIG,
AI_V4MAPPED

Getaddrinfo returns one or more addrinfo
structures, each pointing to an AF_INET6
sockaddr. The addresses in the sockaddrs
structure consist of one of the following sets:

v All IPv6 addresses, if there is an IPv6
interface defined on the system and IPv6
addresses exist for hostname

v All mapped IPv4 addresses, if there were no
IPv6 addresses to be returned for hostname
and there was an IPv4 interface defined for
the system

Application prefers
IPv6 addresses, but
can handle native
IPv4 addresses if
necessary.

AF_UNSPEC AI_ADDRCONFIG Getaddrinfo returns one or more addrinfo
structures, each pointing to a sockaddr
structure. The sockaddrs consists of one of the
following sets:

v All AF_INET6 sockaddrs that containIPv6
addresses, if there is an IPv6 interface
defined on the system and IPv6 addresses
exist for hostname

v All AF_INET sockaddrs that contain IPv4
addresses, if there were no IPv6 addresses to
be returned for hostname and there was an
IPv4 interface defined for the system

Application wants
all known addresses
for hostname, in
IPv6 format.

AF_INET6 AI_ADDRCONFIG,
AI_V4MAPPED, AI_ALL

Getaddrinfo returns one or more addrinfo
structures, each pointing to an AF_INET6
sockaddr. The addresses within the sockaddrs
consists of all IPv6 addresses, if there is an IPv6
interface defined on the system and mapped
IPv4 addresses, if there is an IPv4 interface
defined for the system, associated with
hostname.

84 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Table 12. Getaddrinfo application capabilities 2 (continued)

Application
capabilities

Sockaddr family
to request Additional flags to set Expected outputs

Application wants
all known addresses
for hostname, in
native (IPv6 or
IPv4) format.

AF_UNSPEC AI_ADDRCONFIG,
AI_ALL

Getaddrinfo returns one or more addrinfo
structures, each pointing to a sockaddr
structure. The sockaddr structures are a mixture
of AF_INET6 sockaddrs (each containing an
IPv6 address) and AF_INET sockaddrs (each
containing an IPv4 address). The IPv6
addresses are returned only if there is an IPv6
interface defined on the system, and the IPv4
addresses are returned only if there was an
IPv4 interface defined for the system.

Application wants
all known addresses
for hostname,
regardless of system
connectivity, in
native format.

AF_UNSPEC AI_ALL Getaddrinfo returns one or more addrinfo
structures, each pointing to a sockaddr
structure. The sockaddr structures can be a
mixture of AF_INET6 sockaddrs (each
containing an IPv6 address) or AF_INET
sockaddrs (each containing an IPv4 address),
depending on the address resolution.

Default settings
when IPv6 is
enabled on the
system.

AF_UNSPEC NONE Getaddrinfo returns one or more addrinfo
structures, each pointing to a sockaddr
structure. The sockaddrs consists of one of the
following sets:

v All AF_INET6 sockaddrs, containing IPv6
addresses, if there is an IPv6 address defined
for hostname in any queried domain name
server or defined in a local hosts table. No
searches for IPv4 addresses are performed for
hostname.

v All AF_INET sockaddrs, containing IPv4
addresses, if there are no IPv6 addresses
found for hostname.

In either case, the actual availability of IPv6 or
IPv4 interfaces on the system is not taken into
consideration.

Default settings
when IPv6 is not
enabled on the
system.

AF_UNSPEC NONE Getaddrinfo returns one or more addrinfo
structures, each pointing to a sockaddr
structure. The sockaddr structures can be a
mixture of AF_INET6 sockaddrs (each
containing an IPv6 address) or AF_INET
sockaddrs (each containing an IPv4 address),
depending on the address resolution
performed. The actual availability of IPv6 or
IPv4 interfaces on the system in not taken into
consideration.

Regardless of the application model in use, and because output from getaddrinfo
can be a chain of addrinfo structures, the application should attempt to use each
address, in the order received, to open a socket and connect or send a datagram to
the target host name until it is successful, versus simply using the first address and
stopping if a failure is encountered.

The application is now responsible for freeing the storage (addrinfo and sockaddr
structures, and so on) associated with the new resolver APIs. The new freeaddrinfo
API should be used to free this storage. If the application neglects to perform this

Chapter 7. Basic socket API extensions for IPv6 85

step, the resolver cleans up the storage when the process terminates, but storage
constraints might occur before termination if a large number of getaddrinfo APIs
are performed.

Scope information on getaddrinfo calls

The getaddrinfo process accepts scope information as part of the input host name.
Scope information is defined as an interface name or the interface index that
uniquely identifies a specific interface to be used with a link-local IPv6 address
(see “Interface identification” on page 89 for information about interface indexes).
An application might need to pass scope information to the resolver so that the
resulting sockaddr_in6 structures have the appropriate zone index value set by the
resolver. The zone index is determined using the if_nametoindex() function if the
input scope information is an interface name, or it is determined by converting the
input interface index value into binary form.

Scope information is provided in the format hostname%scope information, where the
scope information can be the interface name or an interface index.The combined
hostname%scope information cannot exceed 255 characters in length; if the
information is longer, the request fails.

Rules: When getaddrinfo processes scope information the following rules apply:
v Scope information can be present only in the following cases:

– The host name portion of the input is not null (for example, input that is not
in the form %scope information)

– If a numeric form of host name is specified, the numeric form must represent
an IPv6 address

v If scope information is specified as an interface name, the interface name must
resolve to a zone index using the if_nametoindex() function.

v If scope information is specified as an interface index, the index must be valid
for this system.

If any of these verification steps fail, the getaddrinfo request fails.

Zone indexes apply only to link-local IPv6 addresses in z/OS Communications
Server. If the input host name specified by the application does not resolve to a
link-local IPv6 address, any scope information provided as part of the host name is
ignored.

See “Support for scope information” on page 58 for more general information on
scope information in the z/OS Communications Server environment.

Socket address structure to host name and service name
The getnameinfo call is a replacement for the existing gethostbyaddr and
getservbyport APIs. The getnameinfo call takes an input IP address, an input port
number, or both, and returns (when resolution is successful) the hostname or the
service location. These parameters are passed in a sockaddr structure that also
contains the address family.

For input link-local IPv6 addresses, the zone index value in the sockaddr structure
is also used as an input by getnameinfo processing. The zone index value in this
instance is returned as scope information that is appended to the output host
name, using the format host name%scope information. The form of the scope
information can be the numeric form of the zone index value or the interface name

86 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

associated with the zone index value, which is identified using the
if_indextoname() function (see “Interface identification” on page 89 for details).
The format of the scope information returned to the application as part of the
hostname is determined by the flag, NI_NUMERICSCOPE, on the getnameinfo()
call. The total length of the combined host name and scope information must be
able to fit within the buffer passed by the application (up to a maximum buffer
size of 255 characters in length), or the value is truncated to fit within the buffer.

In addition to IP address or port number, one of which must be present on a valid
getnameinfo invocation, the application can specify additional input to the
Resolver on the getnameinfo invocation. This input is optional. The input settings
include the following (various input flag settings can be specified):

NI_NOFQDN
Specifies that only the host name portion of the fully qualified domain
name (FQDN) is returned for local hosts.

NI_NUMERICHOST
Specifies that the numeric form of the host name, its IP address, is returned
instead of its name. No resolution takes place for the specified input if the
NI_NUMERICHOST flag is on.

NI_NUMERICSERV
Specifies that the numeric form of the service name, the port number, is
returned instead of the service name. No resolution takes place for the
specified input if the NI_NUMERICSERV flag is on.

NI_NAMEREQD
Specifies that an error is returned if the host name cannot be located. (If
NI_NAMEREQD is not specified, the numeric form of the host name, the
IP address, is returned).

NI_DGRAM
Specifies that the service is a datagram service (SOCK_DGRAM). The
default behavior assumes that the service is a stream service.

NI_NUMERICSCOPE
Specifies that the numeric form of the scope information, its interface
index, appended to the host name, is returned instead of the interface
name. If the input IP address was not a link-local address, or if the
application did not request that the host name be returned as output, scope
information is not returned, and the setting of NI_NUMERICSCOPE is
ignored. If NI_NUMERICSCOPE is not specified, the default is to return
the interface name when scope information is appended to the host name.

Address conversion functions
IP addresses often need to be given to a socket application in character (string)
format. It is also common for socket applications to need to display IP addresses in
string format. The following functions work for IPv4 and IPv6 addresses:

inet_ntop
Convert a binary IP address (either v4 or v6) into string format.

inet_pton
Convert an IP address in string format to binary format.

The functions inet_ntoa and inet_addr are still available, but they cannot be used
for IPv6 addresses.

Chapter 7. Basic socket API extensions for IPv6 87

Table 13. Address conversion functions

Function

z/OS UNIX
Assembler
Callable services

C/C++ using
Language
Environment

IP CICS C
sockets REXX

Socket Extended
macro/call (includes
CICS EZASOKET)

inet_pton No Yes Yes No No

inet_ntop No Yes Yes No No

PTON No No No No Yes

NTOP No No No No Yes

Address testing macros

The macros listed in Table 14 can be used to test for special IPv6 addresses.

Table 14. Address testing macros

Macros

Assembler
Callable
services

C/C++ using
Language
Environment

IP CICS C
sockets REXX

Socket Extended
macro/call
(includes CICS
EZASOKET)

IN6_IS_ADDR_UNSPECIFIED No Yes Yes No No

IN6_IS_ADDR_LOOPBACK No Yes Yes No No

IN6_IS_ADDR_MULTICAST No Yes Yes No No

IN6_IS_ADDR_LINKLOCAL No Yes Yes No No

IN6_IS_ADDR_SITELOCAL No Yes Yes No No

IN6_IS_ADDR_V4MAPPED No Yes Yes No No

IN6_IS_ADDR_V4COMPAT No Yes Yes No No

IN6_IS_ADDR_MC_NODELOCAL No Yes Yes No No

IN6_IS_ADDR_MC_LINKLOCAL No Yes Yes No No

IN6_IS_ADDR_MC_SITELOCAL No Yes Yes No No

IN6_IS_ADDR_MC_ORGLOCAL No Yes Yes No No

IN6_IS_ADDR_MC_GLOBAL No Yes Yes No No

The macros function in the following ways:
v The first seven macros return true if the address is of the specified type, or false

otherwise.
v The last five macros test the scope of a multicast address and return true if the

address is a multicast address of the specified scope, or false if the address is
either not a multicast address or not of the specified scope.

v IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only
for the two types of local-use IPv6 unicast addresses (link-local and site-local),
and that by this definition, the IN6_IS_ADDR_LINKLOCAL macro returns false
for the IPv6 loopback address (::1). These two macros do not return true for IPv6
multicast addresses of either link-local scope or site-local scope.

88 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Interface identification
IPv6 interfaces can have many different IP addresses. IPv6 allows a socket
application to specify an interface to use for sending data by specifying an
interface index. Certain socket options allow specification an interface index. Also,
socket options for IPv6 multicast join group and IPv6 multicast leave group allow
optional specification of an interface index.

The IPv6 resolver interface enables a socket application to specify interface index
or interface name on getaddrinfo calls to initialize the zone index field in the
sockaddr structure information for link-local IPv6 addresses. The getnameinfo calls
return the interface index or interface name for input link-local IPv6 addresses
when the sockaddr structure contains the zone index. See “Scope information on
getaddrinfo calls” on page 86 for more information. Some z/OS applications use
this resolver capability to enable users to include interface (or scope) information
as part of host name or IPv6 address information passed to the resolver. See
Table 15 for a list of the applications that support for this function.

The function, if_nameindex(), allows socket applications to obtain a list of interface
names and their corresponding index. Also, two functions, if_nametoindex() and
if_indextoname() allow translation of an interface name to its index and translation
of an interface index to an interface name. The function, if_freenameindex(), is
used to free dynamic storage allocated by the if_nameindex() function.

For non-C/C++ (Language Environment applications), a new ioctl function code
(SIOCGIFNAMEINDEX) is provided. Use Table 15 to determine which APIs
support this new ioctl.

Table 15. Function calls

Function/IOCTL

z/OS UNIX
Assembler
Callable
services

C/C++ using
Language
Environment

IP CICS
C sockets REXX

Socket
Extended
macro/call
(includes CICS
EZASOKET)

if_nametoindex No Yes Yes No No

if_indextoname No Yes Yes No No

if_nameindex No Yes Yes No No

SIOCGIFNAMEINDEX Yes No No Yes Yes

if_freenameindex No Yes Yes No No

Socket options to support IPv6
A group of socket options is defined to support IPv6. These options are defined
with a level of IPPROTO_IPV6. The individual options begin with IPV6_ or with
MCAST_.

Restriction: The options that begin with IPV6_ are allowed only on AF_INET6
sockets.

In most cases, an IPV6_xxx option can be set on an AF_INET6 socket that is using
IPv4-mapped IPv6 addresses but have no effect. For example, the
IPV6_UNICAST_HOPS socket option is used to set a hop limit value in the IPv6
header. Because IPv4 packets are used with IPv4-mapped IPv6 addresses, the hop
limit value is not used.

Chapter 7. Basic socket API extensions for IPv6 89

Guideline: The Sockets Extended macro/call APIs do not use level as an input to
getsockopt() and setsockopt(). However, other IPv6-enabled APIs do
use level as input. For detailed information about setsockopt() and
getsockopt() input and output, refer to the API-specific information.

Table 16. Socket options for getsockopt() and setsockopt()

Socket options getsockopt() setsockopt()

z/OS UNIX
Assembler
Callable
services

C/C++ using
Language
Environment

IP CICS C
sockets REXX

Sockets Extended
macro/call (includes
CICS EZASOKET)

IPV6_ADDR_PREFERENCES Yes Yes Yes Yes Yes

IPV6_UNICAST_HOPS Yes Yes Yes Yes Yes

IPV6_MULTICAST_IF Yes Yes Yes Yes Yes

IPV6_MULTICAST_LOOP Yes Yes Yes Yes Yes

IPV6_MULTICAST_HOPS Yes Yes Yes Yes Yes

IPV6_JOIN_GROUP Yes Yes Yes Yes Yes

IPV6_LEAVE_GROUP Yes Yes Yes Yes Yes

IPV6_V6ONLY Yes Yes Yes Yes Yes

MCAST_BLOCK_SOURCE Yes Yes Yes Yes Yes

MCAST_JOIN_GROUP Yes Yes Yes Yes Yes

MCAST_JOIN_SOURCE_GROUP Yes Yes Yes Yes Yes

MCAST_LEAVE_GROUP Yes Yes Yes Yes Yes

MCAST_LEAVE_SOURCE_GROUP Yes Yes Yes Yes Yes

MCAST_UNBLOCK_SOURCE Yes Yes Yes Yes Yes

Option to control sending of unicast packets
Use the following option to control sending of unicast packets:

IPV6_UNICAST_HOPS
The IPv6 header contains a hop limit field that controls the number of
hops over which a datagram can be sent before being discarded. This is
similar to the TTL field in the IPv4 header. The IPV6_UNICAST_HOPS
socket option can be used to set the default hop limit value for an
outgoing unicast packet. The socket option value should be between 0 and
255 inclusive. A socket option value of -1 is used to clear the socket option.
This causes the stack default to be used.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, the stack's default value is returned.

The HOPLIMIT parameter on the IPCONFIG6 statement influences the
default hop limit when this socket option is not set. An application must
be APF-authorized or have superuser authority to set this option to a value
greater than the value of HOPLIMIT on the IPCONFIG6 statement. See
z/OS Communications Server: IP Configuration Guide for more information
about the IPCONFIG6 statement.

Tip: This function is similar to the IPv4 socket option IP_TTL.

Options to control sending of multicast packets
These options allow an application to control certain features in the transmission of
IPv6 multicast packets. These socket options do not have to be set to send
multicast packets. Supplying a multicast address as the destination address is the
only thing required to send an IPv6 multicast packet.

90 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

||

|

|
|
|
|

|
|
|
|
||

|
|
|

IPV6_MULTICAST_IF
This socket option allows an application to control the outgoing interface
used for a multicast packet. The socket option value is the interface index
of the interface to be used.

A getsockopt() with this option returns the value set by setsockopt(). If a
setsockopt() has not been done, the value 0 is returned.

Tip: This function is similar to the IPv4 socket option IP_MULTICAST_IF.

IPV6_MULTICAST_HOPS
The IPv6 header contains a hop limit field that controls the number of
hops over which a datagram can be sent before being discarded. This is
similar to the TTL field in the IPv4 header. The IPV6_MULTICAST_HOPS
socket option can be used to set the default hop limit value for an
outgoing multicast packet. The socket option value should be in the range
0–255. A socket option value of -1 is used to clear the socket option. This
causes the default value 1 to be used.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value 1 is returned.

The default value is 1. An application must be APF-authorized or have
superuser authority to set this option to a value greater than the value of
HOPLIMIT on the IPCONFIG6 statement. See z/OS Communications Server:
IP Configuration Guide for more information on the IPCONFIG6 statement.

Tip: This function is similar to the IPv4 socket option
IP_MULTICAST_TTL.

IPV6_MULTICAST_LOOP
When a multicast packet is sent, if the sender belongs to the multicast
group to which the packet was sent, then this option controls whether the
sender receives a copy of the packet or not. If this option is enabled, then
the sender receives a copy of the packet. The socket option value should be
1 to enable the option, or 0 to disable the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 1 (enabled) is returned.

Tip: This function is similar to the IPv4 socket option
IP_MULTICAST_LOOP.

Options to control receiving of multicast packets
Use the following options to control receiving of multicast packets:

IPV6_JOIN_GROUP
Enables an application to join a multicast group on a specific local
interface. The socket option data specifies an IPv6 multicast address and an
IPv6 interface index. IPv4-mapped IPv6 multicast addresses are not
supported. If an interface index of 0 is specified, the stack selects a local
interface. An application that wants to receive multicast packets destined
for a multicast group needs to join that group. It is not necessary to join a
multicast group to send multicast packets.

Restriction: Getsockopt() does not support this option.

Tip: This function is similar to the IPv4 socket option
IP_ADD_MEMBERSHIP.

Chapter 7. Basic socket API extensions for IPv6 91

IPV6_LEAVE_GROUP
Enables an application to leave a multicast group it previously joined. The
socket option data specifies an IPv6 multicast address and an IPv6
interface index. If an interface index of 0 is used to join a multicast group,
an interface index of 0 must be used to leave the group.

Restriction: Getsockopt() does not support this option.

Tip: This function is similar to the IPv4 socket option
IP_DROP_MEMBERSHIP.

MCAST_JOIN_GROUP
Enables an application to join a multicast group on a specific local
interface. The socket option data specifies an IPv4 or IPv6 multicast
address and an IPv4 or IPv6 interface index. IPv4-mapped IPv6 multicast
addresses are not supported. If the interface index 0 is specified, the stack
selects a local interface. An application that wants to receive multicast
packets destined for a multicast group needs to join that group. An
application does not need to join a multicast group to send multicast
packets.

Restriction: Getsockopt() does not support this option.

Tip: This function is similar to the IPv4 socket option
IP_ADD_MEMBERSHIP and the IPv6 socket option
IPV6_JOIN_GROUP.

MCAST_BLOCK_SOURCE
Enables an application to exclude the reception of multicast packets from
specified source IP addresses. This socket option is issued after an
MCAST_JOIN_GROUP option has been issued.

Restriction: Getsockopt() does not support this option.

Tip: This function is similar to the IPv4 socket option
IP_BLOCK_SOURCE.

MCAST_UNBLOCK_SOURCE
Enables an application to include the reception of multicast packets from
previously excluded source IP addresses. This socket option is issued after
the MCAST_JOIN_GROUP and the MCAST_BLOCK_SOURCE options
have been issued.

MCAST_JOIN_SOURCE_GROUP
Enables an application to join a multicast group on a specific local interface
and on a specific source address. The socket option data specifies an IPv4
or IPv6 multicast address, an IPv4 or IPv6 interface index, and a single
IPv4 or IPv6 source address. IPv4-mapped IPv6 multicast addresses and
IPv4-mapped IPv6 source addresses are not supported. If the interface
index 0 is specified, the stack selects a local interface. An application that
wants to receive multicast packets destined for a source multicast group
needs to join that group. An application does not need to join a multicast
group to send multicast packets. MCAST_JOIN_SOURCE_GROUP can not
be used with MCAST_JOIN_GROUP.

Restriction: Getsockopt() does not support this option.

92 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Tip: This function is similar to the IPv4 socket option
IP_ADD_SOURCE_MEMBERSHIP.

MCAST_LEAVE_GROUP
Enables an application to leave a multicast group that it previously joined
or to leave all sources that joined for a multicast group. The socket option
data specifies an IPv4 or IPv6 multicast address and an IPv4 or IPv6
interface index. If the interface index 0 was specified on the
MCAST_LEAVE_GROUP option to join a multicast group, an interface
index of 0 must be specified to leave the group.

Restriction: Getsockopt() does not support this option.

Tip: This function is similar to the IPv4 socket option
IP_DROP_MEMBERSHIP.

MCAST_LEAVE_SOURCE_GROUP
Enables an application to leave a source multicast group that it previously
joined. The socket option data specifies an IPv4 or IPv6 multicast address,
an IPv4 or IPv6 interface index, and a single IPv4 or IPv6 source address.
If the interface index 0 was specified on the
MCAST_LEAVE_SOURCE_GROUP option to join a multicast group, an
interface index 0 must be specified to leave the group.
MCAST_LEAVE_SOURCE_GROUP is used to leave the group which was
already joined by MCAST_JOIN_SOURCE_GROUP.

Restriction: Getsockopt() does not support this option.

Tip: This function is similar to the IPv4 socket option
IP_DROP_SOURCE_MEMBERSHIP.

Socket option to control IPv4 and IPv6 communications
Use the following option to control IPv4 and IPv6 communications:

IPV6_V6ONLY
An AF_INET6 socket can be used for IPv6 communications, IPv4
communications, or a mix of IPv6 and IPv4 communications. The
IPV6_V6ONLY socket option allows an application to limit an AF_INET6
socket to IPv6 communications only. A nonzero socket option value enables
the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 0 (disabled) is
returned.

If an application wants to enable this option, the setsockopt() must be set
prior to binding the socket, connecting the socket, or sending data over the
socket. This option cannot be changed (either enabled or disabled) after the
socket has been bound. (An implicit bind is done for datagram sockets on
connect or send operations if the socket is not already bound.)

Socket options for SOL_SOCKET, IPPROTO_TCP and
IPPROTO_IP levels

Socket options at the SOL_SOCKET and IPPROTO_TCP levels are not dependent
on the IP layer being used. They are supported for both AF_INET and AF_INET6
sockets.

Chapter 7. Basic socket API extensions for IPv6 93

Socket options at the IPPROTO_IP level support IPv4. They are not supported on
AF_INET6 sockets.

Not all socket options at these levels are supported by all APIs. See API-specific
information on a specific socket options for support levels.

94 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 8. Enabling an application for IPv6

This topic describes how to enable an application for IPv6 and contains the
following topics:
v “Changes to enable IPv6 support”
v “Support for unmodified applications”

Changes to enable IPv6 support
Several coding changes are needed to enable an application for IPv6
communications. Chapter 7, “Basic socket API extensions for IPv6,” on page 79
describes the changes to the basic Socket APIs that most applications use.
Chapter 9, “Advanced socket APIs,” on page 105 describes the changes to
advanced functions (which are typically used by a small number of TCP/IP
applications) of the socket APIs that facilitate IPv6 communications. The divisions
in this topic describe some of the general considerations involved in enabling an
application for IPv6. Note that while many of the examples and references in this
topic assume the use of C/C++ sockets supported by the Language Environment
(LE), most of the concepts (unless explicitly noted) apply to the other Socket API
libraries that support IPv6. For a more detailed description of the actual APIs, see
Chapter 7, “Basic socket API extensions for IPv6,” on page 79 and Chapter 9,
“Advanced socket APIs,” on page 105 and information for the specific API you are
using.

Guideline: You should be familiar with IPv6 in general and IPv6 support on z/OS
Communications Server.

Support for unmodified applications
During the transition period where networks, routers, and hosts are upgraded to
support IPv6, it is expected that most IPv6-enabled hosts also continue to have
IPv4 connectivity. This is accomplished with dual-mode stack support that allows a
single TCP/IP protocol stack to support both IPv4 and IPv6 communications.
TCP/IP on z/OS supports dual-mode stack operation. As a result, applications that
are not IPv6-enabled continue to function over an IPv4 network, without any
changes. However, at some point during the IPv6 deployment process, some IP
hosts might only have connectivity to IPv6 networks or have a TCP/IP protocol
stack that is capable of IPv6 communications only. You can enable IPv6-only hosts
to communicate with IPv4-only applications as described in “Enabling IPv6
communication between IPv6 nodes or networks in an IPv4 environment” on page
46 and “Enabling end-to-end communication between IPv4 and IPv6 applications”
on page 47. If you do not use these methods, an application needs to be enabled
for IPv6 in order to allow for communications with IPv6-only hosts or applications.

Application awareness of whether system is IPv6 enabled
A z/OS system might or might not be enabled for IPv6 communications. Enabling
a z/OS system for IPv6 support requires explicit configuration by the system
administrator to allow AF_INET6 sockets to be created. As a result, an application
cannot typically assume that IPv6 is enabled on the systems where the application
is running. Some exceptions do exist. For example, applications can run on a
limited number of systems that are known to be IPv6 enabled. However, in
general, most applications that are being enhanced to support IPv6 must first

© Copyright IBM Corp. 2002, 2010 95

perform a run-time test to determine whether IPv6 is enabled on the system where
they are executing. If the system is not enabled for IPv6, the application should
proceed with its existing IPv4 logic. If the system is enabled for IPv6, the
application can now use AF_INET6 sockets and features to communicate with both
IPv4 and IPv6 applications.

Determine if a system is enabled for IPv6 by attempting to create an AF_INET6
socket. If this operation is successful, the application can assume that IPv6 is
enabled. If the operation fails (with return code EAFNOSUPPORT) the application
should revert to its IPv4 logic and create an AF_INET socket.

Table 17. Using socket() to determine IPv6 enablement

Affected socket
API call Required changes

socket() Specify AF_INET6 as the Address Family (or domain) parameter. This
API call fails if the system is not enabled for IPv6.

The getaddrinfo() API is an alternative mechanism that can be used by TCP/IP
client applications to determine whether IPv6 is enabled. This API is a replacement
for the gethostbyname() API and is typically used by TCP/IP client programs to
resolve a host name to an IP address. For example, a client application that
receives the server application's host name or IP address (such as FTP) as input
can invoke the getaddrinfo() function prior to opening up a socket with a selected
set of options. This allows the application to receive a list of addrinfo structures
(one for each IP address of the destination host) that contain the following
information:
v The address family of the IP address (AF_INET or AF_INET6)
v A pointer to a socket address structure of the appropriate type (sockaddr_in or

sockaddr_in6) that is fully initialized (including the IP address and Port fields)
v The length of the socket address structure

A client application can be coded with this information in a manner that allows it
to be protocol-independent without having to perform specific run-time checks to
determine whether IPv6 is enabled or not and without having to have dual-path
logic (IPv4 versus IPv6). The following is an example of this approach:

96 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

When this example executes on a system where IPv6 is not enabled, only IPv4
addresses are returned in AF_INET format (in sockaddr_in structures). When this

int
myconnect(char *hostname)
{

struct addrinfo *res, *aip;
struct addrinfo hints;
char buf[INET6_ADDRSTRLEN];
static char *servicename = "21";
int sock = -1;
int error;

/* Initialize the hints structure for getaddrinfo() call.
This application can deal with either IPv4 or IPv6 addresses.
It relies on getaddrinfo to return the most appropriate IP address
and socket address structure based on the current configuration */

bzero(&hints, sizeof (hints));
hints.ai_socktype = SOCK_STREAM; /* Interested in streams sockets

only */
/* Note that we are asking for all IP addresses to be returned (IPv4

or IPv6) based on the system connectivity. Also, note that we
would prefer all addresses to be returned in sockaddr_in6 format
if the system is enabled for IPv6. In addition, we also specify
a numeric port using AI_NUMERICSERV so that the returned socket
address structures are primed with our port number. */

hints.ai_flags = AI_ALL | AI_V4MAPPED | AI_ADDRCONFIG |
AI_NUMERICSERV;

hints.ai_family = AF_UNSPEC;
error = getaddrinfo(hostname, servicename, &hints, &res);
if (error != 0) {

(void) fprintf(stderr,
"getaddrinfo: %s for host %s service %s\n",
gai_strerror(error), hostname, servicename);

return (-1);
}

for (aip = res; aip != NULL; aip = aip->ai_next) {
/*
* Loop through list of addresses returned, opening sockets
* and attempting to connect()until successful. The
* The address type depends on what getaddrinfo()
* gave us.
*/

sock = socket(aip->ai_family, aip->ai_socktype,
aip->ai_protocol);

if (sock == -1) {
printf("Socket failed:
freeaddrinfo(res);
return (-1);

}
/* Connect to the host. */
if (connect(sock, aip->ai_addr, aip->ai_addrlen) == -1) {

printf("Connect failed, errno=%d, errno2=%08x\n",
errno, __errno2());
(void) close(sock);
sock = -1;
continue;

}
break;

}
freeaddrinfo(res);
return (sock);

}

Figure 15. Example of protocol-independent client application

Chapter 8. Enabling an application for IPv6 97

identical example executes on a IPv6-enabled system, both IPv4 and IPv6
addresses are returned, and the IPv4 addresses are returned in IPv4-mapped IPv6
address format (in sockaddr_in6 structures). Note that an AF_INET6 socket can be
used for the connection even when the address returned by getaddrinfo() is an
IPv4-mapped IPv6 address.

Socket address structure changes
As mentioned in Chapter 7, “Basic socket API extensions for IPv6,” on page 79, the
socket address structure (sockaddr) is larger for IPv6 and has a slightly different
format. This structure is passed as input or output on several socket API calls. The
type of structure passed must match the address family of the socket being used
on the socket API call. As a result, application changes are necessary. Table 18
describes the necessary changes:

Table 18. sockaddr structure changes

Affected Socket API calls Required changes

Bind(), connect(), sendmsg(),
sendto()

The length and type of sockaddr structure passed must
match the address family of the socket being used (structure
sockaddr_in or sockaddr_in6).

accept(), recvmsg(),
recvfrom(), getpeername(),
getsockname()

The sockaddr structure passed needs to be sufficiently large
for the address family of the socket being used on these
APIs. Note that the larger sockaddr_in6 structure can be
passed even for AF_INET sockets. However, the application
needs to be aware that the format of the sockaddr structure
returned depends on the address family of the input socket.

UNIX System Services
BPX1SRX (Send/Recv CSM
buffers using sockets)

The length and type of sockaddr structure passed must
match the address family of the socket being used (structure
sockaddr_in or sockaddr_in6).

Address conversion functions
Because IPv6 and IPv4 addresses have a different format and size, changes are
required when formatting these addresses for presentation purposes. Two utility
functions have been introduced for a selected set of socket APIs to help
applications perform this processing. A formatted IPv6 address uses significantly
more space than a formatted IPv4 address (46 bytes versus 16 bytes) and this
might affect the layout of any messages and displays that include an IP address.

Table 19. Address conversion function changes

Affected API call Required changes

Translating an IP address from numeric form to
presentation form using inet_ntoa()

Convert to use inet_ntop() function. This
function can be used for both IPv4 and
IPv6 addresses.

Translating a presentation form IP address to
numeric form using inet_addr()

Convert to use inet_pton() function. This
function can be used for both IPv4 and
IPv6 addresses.

Resolver API processing
TCP/IP applications typically need to resolve a host name to an IP address and
sometimes need to resolve an IP address to a host name. Applications perform this
processing by invoking resolver APIs, such as gethostbyname() and
gethostbyaddr(). A new set of resolver APIs was introduced to support IPv6.
Applications that currently use resolver APIs need to be modified to use the new

98 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

APIs in order to be enabled for IPv6. The older resolver APIs continue to be
supported for IPv4 communications. For more information about resolver APIs,
refer to “Name and address resolution functions” on page 81.

Table 20. Resolver API changes

Affected API call Required changes

gethostbyname() Use new getaddrinfo() API. These APIs can be used even if the system
is not IPv6 enabled. Note that the freeaddrinfo() API needs to be issued
to free up storage areas returned by the getaddrinfo() API.

gethostbyaddr() Use the new getnameinfo() API. This API can also be used on a system
that is not IPv6 enabled.

Special IPv6 addresses
IPv4 provides two IP addresses that have the following special meaning in the
context of socket programs:
v The Loopback Address, typically 127.0.0.1, allows applications to connect() to or

send datagrams to other applications on the same host.
v The INADDR_ANY address (0.0.0.0) allows TCP/IP server applications that

specify it on a bind() call to accept incoming connections or datagrams across
any network interface configured on the local host.

The concept of these special IPv4 addresses is also available in IPv6. The changes
are described in Table 21.

Table 21. Special IPv6 address changes

Socket API calls Required changes

Binding a socket to the IPv4 wildcard address
(INADDR_ANY - 0.0.0.0)

Specify the unspecified IPv6 address
(in6addr_any), (::), in the sockaddr_in6
structure.

Using LOOPBACK (127.0.0.1) on bind(),
connect(), sendto(), sendmsg()

Specify IPv6 Loopback address (::1) in the
sockaddr_in6 structure.

See Chapter 7, “Basic socket API extensions for IPv6,” on page 79 for details about
any constant definitions available for these special IPv6 addresses and the socket
API that you are using.

Passing ownership of sockets across applications using
givesocket and takesocket APIs

If your application is using the givesocket() and takesocket() APIs to pass
ownership of a socket from one program to another, some changes are necessary
for IPv6 enablement. The givesocket() and takesocket() APIs now support an
address family of AF_INET6 for the socket being given or taken. The address
family specified by the program performing the takesocket() must match the
address family specified by the program that performed the givesocket(). As a
result, care should be taken in coordinating the updates for IPv6 support across the
partner applications performing givesocket and takesocket processing.

Table 22. givesocket() and takesocket() changes

Affected API call Required changes

givesocket() Specify AF_INET6 (Decimal 19) as the domain when giving an
AF_INET6 socket.

Chapter 8. Enabling an application for IPv6 99

Table 22. givesocket() and takesocket() changes (continued)

Affected API call Required changes

getclientid() Specify AF_INET6 as the domain when dealing with an
AF_INET6 socket.

takesocket() Specify AF_INET6 as the domain when taking an AF_INET6
socket.

Using multicast and IPv6
IPv6 provides enhanced support for multicast applications, including a more
granular scope for multicast addressing and socket options that enable an
application to use this support. Table 23 lists IPv4 multicast setsockopt() and
getsockopt() options, the equivalent IPv6 multicast options, and
protocol-independent multicast options.

Table 23. Multicast options
Multicast function IPv4 IPv6 Protocol-independent

Level of specified
option on
setsockopt()/
getsockopt()

IPPROTO_IP IPPROTO_IPV6 IPPROTO_IP or IPPROTO_IPV6

Join a multicast group IP_ADD_MEMBERSHIP IPV6_JOIN_GROUP MCAST_JOIN_GROUP

Leave a multicast
group or leave all
sources of that
multicast group

IP_DROP_MEMBERSHIP IPV6_LEAVE_GROUP MCAST_LEAVE_GROUP

Select outbound
interface for sending
multicast datagrams

IP_MULTICAST_IF IPV6_MULTICAST_IF NA

Set maximum hop
count

IP_MULTICAST_TTL IPV6_MULTICAST_HOPS NA

Enable multicast
loopback

IP_MULTICAST_LOOP IPV6_MULTICAST_LOOP NA

Join a source
multicast group

IP_ADD_SOURCE_MEMBERSHIP NA MCAST_JOIN_SOURCE_GROUP

Leave a source
multicast group

IP_DROP_SOURCE_MEMBERSHIP NA MCAST_LEAVE_SOURCE_GROUP

Block data from a
source to a multicast
group

IP_BLOCK_SOURCE NA MCAST_BLOCK_SOURCE

Unblock a previously
blocked source for a
multicast group

IP_UNBLOCK_SOURCE NA MCAST_UNBLOCK_SOURCE

In addition to the changes in the setsockopt() and getsockopt() options, the input
and output parameters specified for these options are also changed when
compared to IPv4. For example, selecting an outgoing interface for sending
multicast IPv6 datagram involves passing an interface index that identifies the
interface versus passing the IP address of the interface. For a detailed description
of the IPv6 multicast options see “Options to control sending of multicast packets”
on page 90.

An important consideration in updating your multicast application for IPv6 is how
these changes are provided to the other partner applications participating in these
multicast operations. For example, if a partner application in the network that is
receiving these multicast packets is not updated, then the application sending the
multicast datagrams might need to send them twice, once to an IPv4 multicast
address and once to an IPv6 multicast address. Also, in order to perform this type

100 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

of processing the application needs to create two separate sockets, an AF_INET
socket and a AF_INET6 socket. There is no support equivalent to IPv4-mapped
IPv6 addresses that would allow an AF_INET6 socket to be used in sending IPv4
multicast packets. As an alternative solution, first enable all the receiver
applications for IPv6 and then enable the sender applications.

IP addresses might not be permanent
Long-term use of an address is discouraged as IPv6 allows for IP addresses to be
dynamically renumbered. Applications should rely on DNS resolvers to cache the
appropriate IP addresses and should avoid having IP addresses in configuration
files.

Including IP addresses in the data stream
Applications that include IP addresses in the data they transmit over TCP/IP
require changes when enabling for IPv6, as the IPv6 addresses have a different
format from IPv4 addresses. The following options can be considered in dealing
with these changes:
v Determine whether IP addresses are really needed in the data exchanged by the

applications.
v Change the partner applications processing to always send IP addresses encoded

using IPv6 format. In the case where IPv4 addresses are being used, they can be
represented as IPv4-mapped IPv6 addresses.

v Include a version identifier that describes the format of the IP address being sent
(IPv4 or IPv6).

v Modify applications to use host names instead of IP addresses in the data
stream. This approach requires that the partner receiving the host name is able
to resolve it to an IP address. Also note that a single IP host can have multiple
IP addresses.

v In many cases, you might not be able to change all partner applications in your
network at the same time. As a result, determining the type of IP address to
send is a key consideration. Consider the following options when making this
decision:
– Determine the level of support when the connection is established by

exchanging version or supported functions.
– Encode the IPv6 addresses using new options. If the option is rejected by the

peer, then it does not support IPv6.
– Base the decision on the partner application's IP address. If the partner's

source IP address is an IPv4 address then only use IPv4 addresses; otherwise,
use an IPv6 address. This option can cause an IPv6-enabled partner
application to be treated as an IPv4 partner if that application uses an
IPv4-mapped IPv6 address to connect.

Example of an IPv4 TCP server program

The following example shows a simple IPv4 TCP server program written in C. The
program opens a TCP socket, binds it to port 5000, and then performs a listen()
followed by an accept() call. When a connection is accepted the server sends a
Hello text string back to the client and closes the socket. This sample program is
later shown with the changes required to make it IPv6 enabled.
/* simpleserver.c

A very simple TCP socket server
*/
#include <sys/socket.h>

Chapter 8. Enabling an application for IPv6 101

#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc,const char **argv)
{

int serverPort = 5000;
int rc;
struct sockaddr_in serverSa;
struct sockaddr_in clientSa;
int clientSaSize;
int on = 1;
int c;
int s = socket(PF_INET,SOCK_STREAM,0);
rc = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof on);
/* initialize the server’s sockaddr */
memset(&serverSa,0,sizeof(serverSa));
serverSa.sin_family = AF_INET;
serverSa.sin_addr.s_addr = htonl(INADDR_ANY);
serverSa.sin_port = htons(serverPort);
rc = bind(s,(struct sockaddr *)&serverSa,sizeof(serverSa));
if (rc < 0)
{

perror("bind failed");
exit(1);

}
rc = listen(s,10);
if (rc < 0)
{

perror("listen failed");
exit(1);

}
rc = accept(s,(struct sockaddr *)&clientSa,&clientSaSize);
if (rc < 0)
{

perror("accept failed");
exit(1);

}
printf("Client address is:
c = rc;
rc = write(c,"hello\n",6);
close (s);
close (c);
return 0;

}

Example of the simple TCP server program enabled for IPv6

The simple TCP server program is shown with the changes (in bold) that are
required to allow it to accept connections from IPv6 clients.
/*

A very simple TCP socket server for v4 or v6
*/

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main(int argc,const char **argv)
{

int serverPort = 5000;
int rc;

102 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

union {
struct sockaddr_in sin;
struct sockaddr_in6 sin6;

} serverSa;
union {

struct sockaddr_in sin;
struct sockaddr_in6 sin6;

} clientSa;

int clientSaSize = sizeof(clientSa);
int on = 1;
int family;
socklen_t serverSaSize;
int c;
char buf[INET6_ADDRSTRLEN];

int s = socket(PF_INET6,SOCK_STREAM,0);
if (s < 0)
{

fprintf(stderr, "IPv6 not active, falling back to IPv4...\n");
s = socket(PF_INET,SOCK_STREAM,0);
if (s < 0)
{

perror("socket failed");
exit (1);

}
family = AF_INET;
serverSaSize = sizeof(struct sockaddr_in);

}
else /* got a v6 socket */
{

family = AF_INET6;
serverSaSize = sizeof(struct sockaddr_in6);

}
printf("socket descriptor is
rc = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof on);

/* initialize the server’s sockaddr */
memset(&serverSa,0,sizeof(serverSa));
switch(family)
{

case AF_INET:
serverSa.sin.sin_family = AF_INET;
serverSa.sin.sin_addr.s_addr = htonl(INADDR_ANY);
serverSa.sin.sin_port = htons(serverPort);
break;

case AF_INET6:
serverSa.sin6.sin6_family = AF_INET6;
serverSa.sin6.sin6_addr = in6addr_any;
serverSa.sin6.sin6_port = htons(serverPort);

}

rc = bind(s,(struct sockaddr *)&serverSa,serverSaSize);
if (rc < 0)
{

perror("bind failed");
exit(1);

}
rc = listen(s,10);
if (rc < 0)
{

perror("listen failed");
exit(1);

}
rc = accept(s,(struct sockaddr *)&clientSa,&clientSaSize);
if (rc < 0)
{

perror("accept failed");

Chapter 8. Enabling an application for IPv6 103

exit(1);
}
c = rc;
printf("Client address is: %s\n",

inet_ntop(clientSa.sin.sin_family,
clientSa.sin.sin_family == AF_INET

? &clientSa.sin.sin_addr
: &clientSa.sin6.sin6_addr,

buf, sizeof(buf)));

if(clientSa.sin.sin_family == AF_INET6
&& ! IN6_IS_ADDR_V4MAPPED(&clientSa.sin6.sin6_addr))
printf("Client is v6\n");

else
printf("Client is v4\n");

rc = write(c,"hello\n",6);
close (s);
close (c);
return 0;

}

104 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 9. Advanced socket APIs

This topic describes the advanced socket APIs and includes the following topics:
v “Controlling the content of the IPv6 packet header”
v “Using ancillary data on sendmsg() and recvmsg()” on page 118
v “Interactions between socket options and ancillary data” on page 120
v “RAW sockets” on page 121

Before using advanced socket APIs in a multilevel security environment, see z/OS
Communications Server: IP Configuration Guide. The advanced socket API for IPv6
support includes the following:
v IPv6 RAW socket support
v New socket options
v New ancillary data objects on sendmsg/recvmsg
v The ability to receive inbound packet information, including the following:

– Arriving interface index
– Destination IP address
– Hop limit
– Routing headers
– Hop-by-hop option
– Destination options
– Traffic class by way of ancillary data

v The ability to set outgoing packet information, including the following:
– Interface to use
– Source IP address
– Hop limit
– Next hop address
– Routing headers
– Hop-by-hop options
– Destination option
– Traffic class (This can be set by socket options or ancillary data with some

restrictions.)

z/OS UNIX C/C++ and z/OS UNIX Assembler Callable APIs support the
advanced socket API for IPv6. The advanced socket API for IPv6 is not
implemented in native TCP/IP socket APIs.

Controlling the content of the IPv6 packet header
This topic contains information about socket options and how to control the
content of the IPv6 packet header.

© Copyright IBM Corp. 2002, 2010 105

Socket options and ancillary data to support IPv6
(IPPROTO_IPV6 level)

An application can use socket options to enable or disable a function for a socket.
An application can also provide a value to be used for a function with a socket
option. After an option is enabled, it remains in effect for the socket until it is
disabled.

An application can also use ancillary data on the sendmsg() API to enable a
function or provide a value for the packet being sent by way of sendmsg(). The
value of the ancillary data is in effect for that packet only. Note that the value of
the ancillary data can override a socket option value. For a detailed explanation of
ancillary data, see “Using ancillary data on sendmsg() and recvmsg()” on page 118.

An application can also receive ancillary data on the recvmsg() API. The returned
Ancillary data is enabled for any socket options that return data on recvmsg.

A group of advanced socket options and ancillary data is defined to support IPv6.
They are defined with a level of IPPROTO_IPV6 or IPPROTO_ICMPV6. The
individual options begin with IPV6_ and ICMP6_ respectively. These options are
only allowed on AF_INET6 sockets. In most cases, these options can be set on an
AF_INET6 socket that is using IPv4-mapped IPv6 addresses, but have no effect.
For example, the IPV6_HOPLIMIT ancillary data option is used to set a hop limit
value in the IPv6 header. Because IPv4 packets are used with IPv4-mapped IPv6
addresses, the hop limit value is not used. The following are the only advanced
socket options that have an effect on an AF_INET6 socket that is using
IPv4–mapped IPv6 addresses:
v IPV6_PKTINFO
v IPV6_RECVPKTINFO
v IPV6_TCLASS
v IPV6_RECVTCLASS

Table 24. Sockets options at the IPPROTO_IPV6 level

Socket options getsockopt()
setsockopt()

z/OS UNIX
Assembler Callable
Services

C/C++ using
Language
Environment REXX

Communications
Server Sockets
Extended macro/call

IPV6_CHECKSUM Y Y N N

IPV6_DONTFRAG Y Y N N

IPV6_DSTOPTS Y Y N N

IPV6_HOPOPTS Y Y N N

IPV6_NEXTHOP Y Y N N

IPV6_PATHMTU[valid only on
getsockopt()]

Y Y N N

IPV6_PKTINFO Y Y N N

IPV6_RECVDSTOPTS Y Y N N

IPV6_RECVHOPLIMIT Y Y N N

IPV6_RECVHOPOPTS Y Y N N

IPV6_RECVPATHMTU Y Y N N

IPV6_RECVPKTINFO Y Y N N

IPV6_RECVRTHDR Y Y N N

IPV6_RECVTCLASS Y Y N N

IPV6_RTHDR Y Y N N

106 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|

|
|
|

|
|
||

|
|
|

Table 24. Sockets options at the IPPROTO_IPV6 level (continued)

Socket options getsockopt()
setsockopt()

z/OS UNIX
Assembler Callable
Services

C/C++ using
Language
Environment REXX

Communications
Server Sockets
Extended macro/call

IPV6_RTHDRDSTOPTS Y Y N N

IPV6_TCLASS Y Y N N

IPV6_USE_MIN_MTU Y using BPX1 Y N N

Table 25. Ancillary data on sendmsg() (Level = IPPROTO_IPV6)

Ancillary data on sendmsg()
Assembler Callable
Services

C/C++ using
Language
Environment REXX

Sockets Extended
macro/call

IP_QOS_ CLASSIFICATION2 Y Y N N

IPV6_DONTFRAG Y Y N N

IPV6_DSTOPTS Y Y N N

IPV6_HOPLIMIT2 Y Y N N

IPV6_HOPOPTS Y Y N N

IPV6_NEXTHOP Y Y N N

IPV6_PKTINFO2 Y Y N N

IPV6_RTHDR Y Y N N

IPV6_RTHDRDSTOPTS Y Y N N

IPV6_TCLASS Y Y N N

IPV6_USE_MIN_MTU Y Y N N

Table 26. Ancillary data on recvmsg() (Level = IPPROTO_IPV6)

Ancillary data on recvmsg()
Assembler Callable
Services

C/C++ using
Language
Environment REXX

Sockets Extended
macro/call

IPV6_DSTOPTS Y Y N N

IPV6_HOPLIMIT Y Y N N

IPV6_HOPOPTS Y Y N N

IPV6_PATHMTU Y Y N N

IPV6_PKTINFO Y Y N N

IPV6_RTHDR Y Y N N

IPV6_TCLASS Y Y N N

Options for path MTU discovery
Use the following options for MTU discovery:

IPV6_USE_MIN_MTU (used with TCP, UDP and RAW applications)
For IPv6, only the endpoint nodes can fragment a packet. Path MTU
discovery determines the largest packet that can be sent to a destination
without requiring fragmentation by an intermediate node (because that is
not supported). In some cases, an application might not want to have the
overhead of path MTU discovery. All nodes in an IPv6 network are
required to support a minimum MTU of 1280 bytes. When an application
enables this option, path MTU discovery is bypassed. If a direct route to
the destination is not available, the minimum MTU size (1280 bytes) is

1. This option is supported as ancillary data for UDP and RAW protocols. It is not possible to use ancillary data to transmit options
for TCP because there is not a one-to-one mapping between send operations and the TCP segments being transmitted.

Chapter 9. Advanced socket APIs 107

|
|

|
|
|

|
|
||

|
|
|

used to send packets that otherwise might require fragmentation. If a
direct route is available, the link's MTU size is used, because path MTU
discovery is not needed when there are no intermediate nodes in the path.

For unicast destinations, this option disabled (this is the default). This
avoids sending packets with the minimum MTU size. Instead, path MTU
discovery processing information is used.

For multicast destinations, this option enabled (this is the default). This
prevents path MTU discovery information from being used. If a direct
route is not available, packets are sent with the minimum MTU size. If a
direct route is available, packets are sent using the link's MTU, because no
intermediate nodes are in the path.

This option can be enabled or disabled for the following:
v A socket with a setsockopt()
v A single send operation with ancillary data on the sendmsg()

A value of -1 passed on the set socket option causes the default values for
unicast and multicast destinations to be used.

A value of 0 disables this option for both unicast and multicast
destinations. Path MTU discovery information is used to send packets
greater than the minimum MTU size.

A value of 1 enables this option for unicast and multicast destinations. All
packets are sent without using path MTU discovery information, using the
minimum MTU size, unless a direct route is available to the destination.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of -1 (disabled for
unicast, enabled for mutlicast) is returned.

IPV6_DONTFRAG (used with UDP and RAW applications)
The IPV6_DONTFRAG option enables the application to indicate that the
packet should not be fragmented by the local z/OS host.

This option is useful for applications that want to discover the actual path
MTU.

Guideline: When using the IPV6_DONTFRAG socket option, use the
IPV6_RECVPATHMTU socket option also. Otherwise, packets
are silently discarded without any notification to the
application.

This option can be enabled or disabled for the following:
v A socket with a setsockopt()
v A single send operation with ancillary data on the sendmsg()

A value of 1 enables this option for unicast or multicast destinations.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

If IPV6_DONTFRAG is specified along with IPV6_USE_MIN_MTU, the
IPV6_DONTFRAG setting is ignored, resulting in selection of the minimum
architected IPv6 MTU size (1280 bytes).

IPV6_RECVPATHMTU (used with UDP and RAW applications)
The IPV6_RECVPATHMTU option enables the application to receive

108 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

notifications about changes to the path MTU. This option notifies the
application about all path MTU changes for all destinations, not only the
ones initiated by this socket.

When the IPV6_RECVPATHMTU socket option is enabled, the path MTU
is returned as ancillary data on the recvmsg() API (for an empty message)
whenever the path MTU changes. The path MTU can change if the
application sends a packet with the IPV6_DONTFRAG option and the
packet is larger than the current path MTU. The path MTU can also change
if the stack receives a corresponding ICMPv6 packet too big error. The
ancillary data level is IPPROTO_IPV6. The option name is
IPV6_PATHMTU. For a detailed explanation of ancillary data, see “Using
ancillary data on sendmsg() and recvmsg()” on page 118.

This option can be enabled or disabled for a socket with a setsockopt().

A value of 1 enables this option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

IPV6_PATHMTU (used with UDP and RAW applications)
The IPV6_PATHMTU option enables the application to retrieve the current
path MTU to a given destination for which it has done a connect().

This option is useful for applications also using IPV6_RECVPATHMTU
that want to pick a good starting value.

This option is valid only on a getsockopt(). It returns the MTU that the
stack uses on this connected socket.

Options to control the sending of packets
Some of these options add extension headers to outbound packets. z/OS TCP/IP
allows the application to specify a maximum of 512 bytes of extension headers for
an outbound packet.

Use the following options to control the sending of packets:

IPV6_PKTINFO (used with UDP and RAW applications)
The IPV6_PKTINFO option enables the application to provide the
following pieces of information:
v The source IP address for an outgoing packet
v The outgoing interface for a packet

The option value contains a 16-byte IPv6 address and a 4-byte interface
index. An application can provide a nonzero value for one or both pieces
of information.

To perform this operation, an application must meet one of the following
criteria:
v Be APF authorized
v Have superuser authority
v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname.

IPV6_PKTINFO must be defined and the application must at least have
READ access to it.

This option can be enabled or disabled for the following:
v A socket with a setsockopt()
v A single send operation with ancillary data on the sendmsg()

Chapter 9. Advanced socket APIs 109

To disable the option, specify both the IPv6 address and the interface index
as 0 in the option value.

A getsockopt() with this option returns the value set by setsockopt(). If a
setsockopt() has not been done, a value of 0 is returned.

See “Options for setting the source address” on page 120 for a discussion
of the interaction of socket options and ancillary data for the setting of the
source address. See “Options for specifying the outgoing interface” on
page 121 for a discussion of the interaction of socket options and ancillary
data for determining the outgoing interface.

IPV6_HOPLIMIT (used with UDP and RAW applications)
The IPv6 header contains a hop limit field that controls the number of
hops over which a datagram can be sent before being discarded. This is
similar to the TTL field in the IPv4 header. The IPV6_HOPLIMIT option
can be used to set the hop limit value for an outgoing packet. The option
value should be between 0 and 255 inclusive. A value of -1 causes the
TCP/IP protocol stack default to be used.

To perform this operation, an application must meet one of the following
criteria:
v Be APF authorized
v Have superuser authority
v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname.

IPV6_HOPLIMIT must be defined and the application must at least have
READ access to it

The IPV6_UNICAST_HOPS socket option and the
IPV6_MULTICAST_HOPS socket option are available to set a hop limit
value also. See “Hop limit options” on page 120 for information about the
interaction of IPV6_UNICAST_HOPS, IPV6_MULTICAST_HOPS and
IPV6_HOPLIMIT.

IPV6_NEXTHOP (used with UDP and RAW applications)
The IPV6_NEXTHOP enables the application to specify the next hop
address for an outgoing packet. The option value contains a sockaddr_in6
socket address structure and must contain an IPv6 address.

Restriction: This option does not support IPv4 mapped addresses.

To perform this operation, an application must meet one of the following
criteria:
v Be APF authorized
v Have superuser authority
v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname.

IPV6_NEXTHOP must be defined and the application must at least have
READ access to it

This option can be enabled or disabled for the following
v A socket with a setsockopt()
v A single send operation with ancillary data on the sendmsg()

Restriction: IPV6_NEXTHOP is valid only for unicast destinations.

An option value with the optlen value of 0 disables IPV6_NEXTHOP. This
option does not have any meaning for multicast destinations and is
ignored for multicast.

110 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns the value 0
in optlen.

See “Options for specifying the outgoing interface” on page 121 for
information about the interaction of socket options and ancillary data for
determining the outgoing interface.

Tips:

v If you use this socket option in a Common INET environment,
establish affinity to the desired stack to ensure predictable results
(as not all stacks might have a route to the specified next hop
address).

v If you specify a link-local address as the next hop address, specify
the outgoing interface either on IPV6_PKTINFO or by using the
scope portion of the socket address structure.

Rule: The next hop address cannot be a multicast address and must be a
neighbor (for example, the stack must have a direct route to the next
hop address).

IPV6_RTHDR (used with UDP and RAW applications)

The IPV6_RTHDR option enables the application to specify an IPv6 routing
header (as an extension header) for an outgoing packet.

Restriction: Because the type 0 routing header is deprecated in z/OS
Communications Server V1R11, no routing header type is
currently supported. The IPV6_RTHDR option is accepted as a
valid option, but all option type values are rejected as
incorrect values.

To perform this operation, an application must meet one of the following
criteria:
v Be APF authorized
v Have superuser authority
v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname. IPV6_RTHDR

must be defined and the application must at least have READ access to
it

This option can be enabled or disabled for the following:
v A socket with a setsockopt()
v A single send operation with ancillary data on the sendmsg()

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of 0
in optlen.

Tip: If you use this socket option in a Common INET environment,
establish affinity to the desired stack to ensure predictable results (as
not all stacks might have a path to the destination starting with the
first entry in the specified routing header).

A z/OS UNIX C/C++ application can use the following utilities to build
routing headers:
v inet6_rth_space() - return number of bytes required for routing header
v inet6_rth_init() - initialize buffer data for routing header

Chapter 9. Advanced socket APIs 111

v inet6_rth_add() - add one IPv6 address to the routing header

See z/OS XL C/C++ Run-Time Library Reference for a description of these
utilities.

A z/OS UNIX Assembler Callable Services application needs to build the
routing headers explicitly. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_DSTOPTS (used with UDP and RAW applications)
The IPV6_DSTOPTS option enables the application to specify destination
options that get examined by the host at the final destination.

The IPV6_DSTOPTS option can be used to set a destination options header
(as an extension header) for an outgoing packet. The option value contains
a destination options header.

To perform this operation, an application must meet one of the following
criteria:
v Be APF authorized
v Have superuser authority
v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname.

IPV6_DSTOPTS must be defined and the application must at least have
READ access to it

This option can be enabled or disabled for the following:
v A socket with a setsockopt()
v A single send operation with ancillary data on the sendmsg()

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of 0
in optlen.

A z/OS UNIX C/C++ application can use the following utilities to build
the following destination options headers:
v inet6_opt_init() - initialize buffer data for options header
v inet6_opt_append() - add one TLV option to the options header
v inet6_opt_finish() - finish adding TLV options to the option header
v inet6_opt_set_val() - add one component of the option content to the

option

See z/OS XL C/C++ Run-Time Library Reference for a description of these
utilities.

A z/OS UNIX Assembler Callable Services application needs to build the
options headers explicitly. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_RTHDRDSTOPTS (used with UDP and RAW applications)
The IPV6_RTHDRDSTOPTS option enables the application to specify
destination options that get examined by every IP host that appears in the
routing header.

The IPV6_RTHDRDSTOPTS option can be used to set a destination options
header (as an extension header) for an outgoing packet. The option value

112 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

contains a destination options header. This option is ignored if the
application does not also use the IPV6_RTHDR option to specify a routing
header.

To perform this operation, an application must meet one of the following
criteria:
v Be APF authorized
v Have superuser authority
v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname.

IPV6_RTHDRDSTOPTS must be defined and the application must at
least have READ access to it

This option can be enabled or disabled for the following:
v A socket with a setsockopt()
v A single send operation with ancillary data on the sendmsg()

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of 0
in optlen.

A z/OS UNIX C/C++ application can use the following utilities to build
Destination options headers:
v inet6_opt_init() - initialize buffer data for options header
v inet6_opt_append() - add one TLV option to the options header
v inet6_opt_finish() - finish adding TLV options to the option header
v inet6_opt_set_val() - add one component of the option content to the

option

See z/OS XL C/C++ Run-Time Library Reference for a description of these
utilities.

A z/OS UNIX Assembler Callable Services application needs to build the
options headers explicitly. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_TCLASS (used with TCP, UDP and RAW applications)
The IPv6 header contains a traffic class field that can be used to identify
and distinguish between different classes or priorities of IPv6 packets. This
is similar to the type of service (ToS) field in the IPv4 header. The
IPV6_TCLASS option can be used to set the traffic class value for an
outgoing packet. However, if a QoS policy that specifies a traffic class for
the packet is also in effect, then the stack ignores the value specified with
the IPV6_TCLASS option and uses the value specified by the QoS policy.

To perform this operation, an application must meet one of the following
criteria:
v Be APF authorized
v Have superuser authority
v The SERVAUTH resource EZB.SOCKOPT.sysname.tcpname. IPV6_TCLASS

must be defined and the application must at least have READ access to
it

This socket option is also valid for an AF_INET6 socket that is using
IPv4-mapped IPv6 addresses.

Chapter 9. Advanced socket APIs 113

This option can be enabled or disabled for a socket with a setsockopt(). For
UDP and RAW, this option can be enabled or disabled for a single send
operation with ancillary data on the sendmsg().

The option value should be in the range 0 - 255. The value -1 causes the
TCP/IP to use the traffic class value specified by policy (if any) or the
default value 0.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then the stack returns the traffic class
value specified by policy (if any) or the default value 0.

Options that provide information about packets that have been
received
To get information about packets that have been received, use the following
options:

IPV6_RECVPKTINFO (used with UDP and RAW applications)
The IPV6_RECVPKTINFO socket option allows an application to receive
the following pieces of information:
v The destination IP address from the IPv6 header
v The interface index for the interface over which the packet was received

When the IPV6_RECVPKTINFO socket option is enabled, the IP address
and interface index are returned as ancillary data on the recvmsg() API.
The ancillary data level is IPPROTO_IPV6. The option name is
IPV6_PKTINFO. For a detailed explanation of ancillary data, see “Using
ancillary data on sendmsg() and recvmsg()” on page 118.

Restriction: This option can be enabled or disabled only with a
setsockopt(). IPV6_RECVPKTINFO is not valid as ancillary
data on sendmsg(). A nonzero option value enables the option;
a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 0 (disabled) is
returned.

IPV6_RECVHOPLIMIT (used with TCP, UDP and RAW applications)
The IPV6_RECVHOPLIMIT socket option allows an application to receive
the value of the hop limit field from the IPv6 header. When the
IPV6_RECVHOPLIMIT socket option is enabled, the hop limit is returned
as ancillary data on the recvmsg() API. The ancillary data level is
IPPROTO_IPV6. The option name is IPV6_HOPLIMIT. For a UDP or RAW
application, if this option is enabled, the IPV6_HOPLIMIT ancillary data is
returned with each recvmsg(). For a TCP application, if this option is
enabled, IPV6_HOPLIMIT ancillary data is only returned on recvmsg()
when the hop limit value being used has changed. For a detailed
explanation of ancillary data, see “Using ancillary data on sendmsg() and
recvmsg()” on page 118.

This option can only be enabled or disabled with a setsockopt().
IPV6_RECVHOPLIMIT is not valid as ancillary data on sendmsg(). A
nonzero option value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the default value of 0 (disabled) is
returned.

114 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

IPV6_RECVRTHDR (used with UDP and RAW applications)
The IPV6_RECVRTHDR socket option enables the application to receive a
routing header.

When the IPV6_RECVRTHDR socket option is enabled, the routing header
is returned as ancillary data on the recvmsg() API. Each routing header is
returned as one ancillary data object. The ancillary data level is
IPPROTO_IPV6. The option name is IPV6_RTHDR. For a detailed
explanation of ancillary data, see “Using ancillary data on sendmsg() and
recvmsg()” on page 118.

This option can be enabled or disabled only with a setsockopt().
IPV6_RECVRTHDR is not valid as ancillary data on sendmsg(). A nonzero
value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

A z/OS UNIX C/C++ application can use the following utilities to process
routing headers:
v inet6_rth_reverse() - reverse a routing header
v inet6_rth_segments() - return number of segments in a routing header
v inet6_rth_getaddr() - fetch one address from a routing header

Refer to the z/OS XL C/C++ Run-Time Library Reference for a description of
the above utilities.

A z/OS UNIX Assembler Callable Services application needs to build the
options headers explicitly. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_RECVHOPOPTS (used with UDP and RAW applications)
The IPV6_RECVHOPOPTS socket option enables the application to receive
hop-by-hop options.

When the IPV6_RECVHOPOPTS socket option is enabled, the hop-by-hop
options are returned as ancillary data on the recvmsg() API. The ancillary
data level is IPPROTO_IPV6. The option name is IPV6_HOPOPTS. For a
detailed explanation of ancillary data, see “Using ancillary data on
sendmsg() and recvmsg()” on page 118.

This option can be enabled or disabled only with a setsockopt().
IPV6_RECVHOPOPTS is not valid as ancillary data on sendmsg(). A
nonzero value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

A z/OS UNIX C/C++ application can use the following utilities to process
hop-by-hop options headers:
v inet6_opt_next() - extract the next option from the options header
v inet6_opt_find() - extract an option of a specified type from the header
v inet6_opt_get_val() - retrieve one component of the option content

See z/OS XL C/C++ Run-Time Library Reference for a description of the
above utilities.

Chapter 9. Advanced socket APIs 115

A z/OS UNIX Assembler Callable Services application needs to build the
options headers explicitly. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_RECVDSTOPTS (used with UDP and RAW applications)
The IPV6_RECVDSTOPTS socket option enables the application to receive
destination options.

When the IPV6_RECVDSTOPTS socket option is enabled, the destination
options are returned as ancillary data on the recvmsg() API. The
application can receive up to two destination options headers (one before a
routing header and one after a routing header). Each destination options
header is returned as one ancillary data object. The ancillary data level is
IPPROTO_IPV6. The option name is IPV6_DSTOPTS. For a detailed
explanation of ancillary data, see “Using ancillary data on sendmsg() and
recvmsg()” on page 118.

This option can be enabled or disabled only with a setsockopt().
IPV6_RECVDSTOPTS is not valid as ancillary data on sendmsg(). A
nonzero value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

A z/OS UNIX C/C++ application can use the following utilities to process
destination options headers:
v inet6_opt_next() - extract the next option from the options header
v inet6_opt_find() - extract an option of a specified type from the header
v inet6_opt_get_val() - retrieve one component of the option content

See z/OS XL C/C++ Run-Time Library Reference for a description of these
utilities.

A z/OS UNIX Assembler Callable Services application needs to build the
options headers explicitly. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for information about z/OS UNIX
Assembler Callable Services and the data structures defined in the
BPXYSOCK macro.

IPV6_RECVTCLASS (used with TCP, UDP and RAW applications)
The IPV6_RECVTCLASS socket option enables the application to receive
the value of the traffic class field from the IPv6 header.

When the IPV6_RECVTCLASS socket option is enabled, the traffic class is
returned as ancillary data on the recvmsg() API. The ancillary data level is
IPPROTO_IPV6. The option name is IPV6_TCLASS. For a UDP, or RAW
application, if this option is enabled, the IPv6_TCLASS ancillary data is
returned with each recvmsg(). For a TCP application, if this option is
enabled, IPV6_TCLASS ancillary data is only returned on recvmsg() when
the traffic class value being used has changed. For a detailed explanation
of ancillary data, see “Using ancillary data on sendmsg() and recvmsg()”
on page 118.

This socket option is also valid for an AF_INET6 socket that is using
IPv4-mapped IPv6 addresses.

116 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

This option can be enabled or disabled only with a setsockopt().
IPV6_RECVTCLASS is not valid as ancillary data on sendmsg(). A nonzero
value enables the option; a value of 0 disables the option.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been performed, then getsockopt() returns a value of
0.

Option to provide checksum processing for RAW applications
Use the following option to provide checksum processing for RAW applications:

IPV6_CHECKSUM (used with RAW applications)
The IPV6_CHECKSUM socket option can be used by a RAW application to
enable checksum processing to be done by the TCP/IP protocol stack for
packets on a socket. When enabled, the checksum is computed and stored
for outbound packets; the checksum is verified for inbound packets. Note
that this socket option is not applicable for ICMPv6 RAW sockets because
the TCP/IP protocol stack always provides checksum processing for them.

This option can only be enabled or disabled with a setsockopt().
IPV6_CHECKSUM is not valid as ancillary data on sendmsg(). The option
value provides the offset into the user data where the checksum field
begins. The option value should be an even number in the range 0 - 65
534. The value -1 causes the option to be disabled.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the value -1 (disabled) is returned.

Option to provide QoS classification data
Use the following option to provide QoS classification data:

IP_QOS_CLASSIFICATION (used with TCP applications)
This option enables the application to provide QoS classification data. It is
a z/OS Communications Server-specific ancillary data type, and is not
associated with the IPv6 Advanced Socket API. It can be specified as
ancillary data on sendmsg() for AF_INET and AF_INET6 sockets. For
AF_INET sockets the level specified should be IPPROTO_IP; for AF_INET6
sockets the level specified should be IPPROTO_IPV6. For a detailed
description of the function, refer to the programming interfaces in the z/OS
Communications Server: IP Programmer's Guide and Reference for providing
classification data to be used in differentiated services policies.

Socket option to support ICMPv6 (IPPROTO_ICMPV6 level)
Table 27. Sockets options at the IPPROTO_ICMPV6 level

Socket options
getsockopt()
setsockopt()

Assembler
Callable
Services

C/C++ using
Language
Environment REXX

Sockets
Extended
macro/call

ICMP6_FILTER N Y N N

Use the following socket option to support ICMPv6 (IPPROTO_ICMPV6 level):

ICMP6_FILTER (used with RAW applications)
The ICMP6_FILTER socket option can be used by a RAW application to
filter out ICMPv6 message types that it does not need to receive. There are
many more ICMPv6 message types than ICMPv4 message types. ICMPv6

Chapter 9. Advanced socket APIs 117

provides function comparable to ICMPv4 plus IGMPv4 and ARPv4
functionality. An application might only be interested in receiving a subset
of the messages received for ICMPv6.

This option is enabled or disabled with a setsockopt(). The option value
provides a 256-bit array of message types that should be filtered. To
disable the option, the setsockopt() should be issued with an option length
of 0. This causes the TCP/IP protocol stack's default filter to be in effect.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the TCP/IP protocol stack's default filter is
returned. For more information on default filtering, refer to “ICMP
considerations” on page 123.

Table 28 lists the macros that are provided in the Language Environment C/C++
environment to manipulate the filter value.

Table 28. Macros used to manipulate filter value

Macro Description

void ICMP6_FILTER_SETPASSALL(struct
icmp6_filter *);

Specifies that all ICMPv6 messages are
passed to the application.

void ICMP6_FILTER_SETBLOCKALL(struct
icmp6_filter *);

Specifies that all ICMPv6 messages are
blocked from being passed to the
application.

void ICMP6_FILTER_SETPASS(int, struct
icmp6_filter *);

ICMPv6 messages of type specified in
int should be passed to the
application.

void ICMP6_FILTER_SETBLOCK(int, struct
icmp6_filter *);

ICMPv6 messages of type specified in
int should not be passed to the
application.

void ICMP6_FILTER_WILLPASS(int, const struct
icmp6_filter *);

Returns true if the message type
specified in int is passed to the
application by the filter pointed to by
the second argument.

void ICMP6_FILTER_WILLBLOCK(int, const struct
icmp6_filter *);

Returns true if the message type
specified in int is not passed to the
application by the filter pointed to by
the second argument.

Using ancillary data on sendmsg() and recvmsg()
The sendmsg() API is similar to other socket APIs, such as send() and write() that
allow an application to send data, but also provides the capability of specifying
ancillary data. Ancillary data allows applications to pass additional option data to
the TCP/IP protocol stack along with the normal data that is sent to the TCP/IP
network.

The recvmsg() API is similar to other socket APIs, such as recv() and read(), that
allow an application to receive data, but also provides the capability of receiving
ancillary data. Ancillary data allows the TCP/IP protocol stack to return additional
option data to the application along with the normal data from the TCP/IP
network.

These sendmsg() and recvmsg() API extensions are only available to applications
using the following socket API libraries:

118 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

v z/OS IBM C/C++ sockets with the z/OS Language Environment. For more
information about these APIs, see z/OS XL C/C++ Run-Time Library Reference.

v z/OS UNIX Assembler Callable services socket APIs. For more information
about these APIs, see z/OS UNIX System Services Programming: Assembler Callable
Services Reference.

For the sendmsg() and recvmsg() APIs most parameters are passed in a message
header input parameter. The mapping for the message header is defined in
socket.h for C/C++ and in the BPXYMSGH macro for users of the z/OS UNIX
Assembler Callable services. For simplicity, only the C/C++ version of the data
structures are shown in the following code example:

Note:

1. The msg_name and msg_namelen parameters are used to specify the
destination sockaddr on a sendmsg(). On a recvmsg() the msg_name and
msg_namelen parameters are used to return the remote sockaddr to the
application.

2. Data to be sent using sendmsg() needs to be described in the msg_iov
structure. On recvmsg() the received data is described in the msg_iov
structure.

3. The address of the ancillary data is passed in the msg_control field.
4. The length of the ancillary data is passed in msg_controllen. Note that if

multiple ancillary data sections are being passed, this length should
reflect the total length of ancillary data sections.

5. msg_flags is not applicable for sendmsg().

The msg_control parameter points to the ancillary data. This msg_control pointer
points to the following structure (C/C++ example shown below) that describes the
ancillary data (also defined in socket.h and BPXYMSGH respectively):

Guidelines:

v The cmsg_len should be set to the length of the cmsghdr plus the
length of all ancillary data that follows immediately after the
cmsghdr. This is represented by the commented out cmsg_data
field.

v The cmsg_level should be set to the option level (for example,
IPPROTO_IPV6).

v The cmsg_type should be set to the option name (for example,
IPV6_USE_MIN_MTU).

struct msghdr {
void *msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data */
size_t msg_controllen; /* ancillary data length */
int msg_flags; /* flags on received msg */

};

struct cmsghdr {
size_t cmsg_len; /* data byte count includes hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
/* followed by u_char cmsg_data[]; */

};

Chapter 9. Advanced socket APIs 119

Interactions between socket options and ancillary data
This topic describes interactions between socket options and ancillary data,
including hop limits.

Hop limit options
The IPv6 header contains a hop limit field that controls the number of hops over
which a datagram can be sent before being discarded. This is similar to the TTL
field in the IPv4 header. An application can influence the value of the hop limit
field using the following options:
v IPV6_UNICAST_HOPS socket option (hop limit value to be used for unicast

packets on a socket)
v IPV6_MULTICAST_HOPS socket option (hop limit value to be used for multicast

packets on a socket)
v IPV6_HOPLIMIT ancillary data option on sendmsg() (hop limit value to be used

for single packet)

The hop limit value can also be influenced by a router advertised hop limit, as
well as the globally configured HOPLIMIT parameter value on the IPCONFIG6
statement.

For a unicast packet, the following precedence order is used to determine a
packet's hop limit value:
1. If IPV6_HOPLIMIT ancillary data is specified on sendmsg(), use its value.
2. If the IPV6_UNICAST_HOPS socket option is set, use its value.
3. If a router advertised hop limit is known, use its value.
4. If there is a globally configured IPv6 hop limit, use its value.
5. Use the IPv6 default unicast hop limit, 255.

For a multicast packet, the following precedence order is used to determine the
packet's hop limit value:
1. If IPV6_HOPLIMIT ancillary data is specified on sendmsg(), use its value.
2. If the IPV6_MULTICAST_HOPS socket option is set, use its value.
3. Use the IPv6 default multicast hop limit, 1.

Options for setting the source address
A UDP or RAW application can influence the setting of the source address with the
bind() IPv6 address or with the IPV6_PKTINFO option.

The following precedence order is used to determine the source IP address for a
packet:
1. If IPV6_PKTINFO ancillary data is specified on sendmsg() with a nonzero

source IP address, use its value. If the IPV6_PKTINFO ancillary data is
specified with a length of 0 or with a zero source IP address, go to step 3.

2. If the IPV6_PKTINFO socket option is set and contains a nonzero source IP
address, use its value.

3. If the application bound the socket to a specific address, use the Bind address.
4. The TCP/IP protocol stack selects a source address.

120 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Options for specifying the outgoing interface
A UDP or RAW application can influence the outgoing interface for a packet with
the IPV6_PKTINFO option, the IPV6_NEXTHOP option, or the
IPV6_MULTICAST_IF option. The scope ID field in the send operation's
destination sockaddr can also affect the outgoing interface. The options field
contains an interface index. The scope ID field contains a zone index.

When UDP and RAW applications respond to a peer, the applications use the
sockaddr_in6 structure that they received, and they should not set the scope ID
field to zero. When sending an unsolicited packet (for example, not responding to
one that was received), the scope ID field should be zero. UDP and RAW
applications should use the IPV6_PKTINFO, IPV6_NEXTHOP, or
IPV6_MULTICAST_IF options to select the outgoing interfaces. Alternatively, if the
sockaddr_in6 structure is created by the resolver using a getaddrinfo call, UDP and
RAW applications can specify scope information on the getaddrinfo call; the scope
ID field will be set appropriately by the resolver. See “Scope information on
getaddrinfo calls” on page 86 for further information.

The following precedence order is used to determine the outgoing interface for a
packet:
1. If the send operation specifies a destination sockaddr structure with a scope ID,

then the scope ID is used if valid (note that a scope ID should only be
provided with a link-local address).

2. If IPV6_PKTINFO ancillary data is specified on sendmsg() with a nonzero
interface index, use its value. If the IPV6_PKTINFO ancillary data is specified
with a length of 0 or with an interface index of 0, then skip to rule 4.

3. If the IPV6_PKTINFO socket option is set and contains a nonzero interface
index, use its value.

4. If this is a multicast packet and the IPV6_MULTICAST_IF socket option is set,
use its value.

5. If IPV6_NEXTHOP ancillary data is specified on sendmsg() with a nonzero
value, use the stack routing table to determine the interface to the next hop
address. If the IPV6_NEXTHOP ancillary data is specified with a length of 0, go
to step 7.

6. If the IPV6_NEXTHOP socket option is set and contains a nonzero value, use
the stack routing table to determine the interface to the next hop address.

7. The TCP/IP protocol stack uses the routing table to determine the interface to
the destination IP address.

An application should provide outgoing interface information using only one
method, or the application must ensure that the various specifications all indicate
the same outgoing interface. If conflicting outgoing interface specifications are
provided, the packet is discarded by the stack. For example, if scope information
on the resolved destination host name specifies interface-1 and IPV6_PKTINFO
ancillary data specifies interface-2, then the packet is discarded.

RAW sockets
Consider the following factors for RAW sockets use:
v An application (for example, PING) can send and receive ICMPv6 messages.
v An application can send and receive datagrams with an IP protocol that the

TCP/IP stack does not support.

Chapter 9. Advanced socket APIs 121

The external behavior of IPv6 RAW sockets differs significantly from that of IPv4
RAW sockets, specifically with regards to the following:
v RAW protocol values allowed
v Application visibility of IP headers
v ICMP considerations
v Checksumming data

RAW protocol values
Protocol values 0, 41, 43, 44, 50, 51, 59 and 60 are not allowed because they conflict
with the following IPv6 extension header types:
v IPPROTO_HOPOPTS (0)
v IPPROTO_IPV6 (41)
v IPPROTO_ROUTING (43)
v IPPROTO_FRAGMENT (44)
v IPPROTO_ESP (50)
v IPPROTO_AH (51)
v IPPROTO_NONE (59)
v IPPROTO_DSTOPTS (60)

Of the RAW protocol values listed, only the following correspond to well-known
IPv4 RAW protocols:
v IPPROTO_ESP (50)
v IPPROTO_AH (51)

Application visibility of IP headers
Applications do not see IP headers of incoming datagrams and cannot provide IP
headers with outgoing datagrams.

IPv6 RAW applications can get or set selected IP header information for incoming
and outgoing datagrams by way of socket options and ancillary data as follows:
v Applications can set the IPV6_RECVHOPLIMIT socket option in order to get the

hop limit for incoming datagrams in ancillary data. By default, this socket option
is set to off.

v Applications can set the IPV6_RECVPKTINFO socket option in order to get the
destination IP address and interface identifier for incoming datagrams in
ancillary data. By default, this socket option is set to off.

v Applications can set the IPV6_RECVRTHDR socket option in order to get the
routing header for incoming datagrams in ancillary data. By default, this socket
option is set to off.

v Applications can set the IPV6_RECVHOPOPTS socket option in order to get the
hop-by-hop options for incoming datagrams in ancillary data. By default, this
socket option is set to off.

v Applications can set the IPV6_RECVDSTOPTS socket option in order to get the
destination options for incoming datagrams in ancillary data. By default, this
socket option is set to off.

v Applications can set the IPV6_RECVTCLASS socket option in order to get the
traffic class for incoming datagrams in ancillary data. By default, this socket
option is set to off.

122 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

v Applications can set the IPV6_UNICAST_HOPS socket option in order to set the
hop limit for outgoing unicast datagrams. By default, this socket option is set to
off and the configured maximum hop limit or the default hop limit is used.

v Applications can set the IPV6_MULTICAST_HOPS socket option in order to set
the hop limit for outgoing multicast datagrams. By default, this socket option is
set to off and a hop limit of 1 is used.

v Applications can use the IPV6_HOPLIMIT ancillary data option to set the hop
limit for an outgoing datagram.

v Applications can use the IPV6_PKTINFO socket option and ancillary data option
to set the source address and interface identifier for outgoing datagrams. By
default, the socket option is set to off.

v Applications can use the IPV6_NEXTHOP socket option and ancillary data
option to set the next hop address for outgoing datagrams. By default, the socket
option is set to off.

v Applications can use the IPV6_RTHDR socket option and ancillary data option
to set the routing header for outgoing datagrams. By default, the socket option is
set to off.

v Applications can use the IPV6_HOPOPTS socket option and ancillary data
option to set the hop-by-hop options for outgoing datagrams. By default, the
socket option is set to off.

v Applications can use the IPV6_DSTOPTS socket option and ancillary data option
to set the destination options (that get examined by the host at the final
destination) for outgoing datagrams. By default, the socket option is set to off.

v Applications can use the IPV6_RTHDRDSTOPTS socket option and ancillary
data option to set the destination options (that get examined by every host that
appears in the routing header) for outgoing datagrams. By default, the socket
option is set to off.

v Applications can use the IPV6_TCLASS socket option and ancillary data option
to set the traffic class for outgoing datagrams. By default, the socket option is set
to off.

ICMP considerations

IPv6 RAW ICMPv6 applications can set the ICMP6_FILTER socket option to
specify which ICMPv6 message types the socket receives. By default, the following
message types are blocked (are not received):
v ICMP_ECHO
v ICMP_TSTAMP
v ICMP_IREQ
v ICMP_MASKREQ
v ICMP6_ECHO_REQUEST
v MLD_LISTENER_QUERY
v MLD_LISTENER_REPORT
v MLD_LISTENER_REDUCTION
v ND_ROUTER_SOLICIT
v ND_ROUTER_ADVERT
v ND_NEIGHBOR_SOLICIT
v ND_NEIGHBOR_ADVERT
v ND_REDIRECT

Chapter 9. Advanced socket APIs 123

Checksumming data
IPv6 RAW applications can set the IPV6_CHECKSUM socket option in order to
have TCP/IP calculate checksums for outgoing datagrams and verify checksums
for incoming datagrams. By default, this socket option is set to off.

124 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Chapter 10. Advanced concepts and topics

This topic explains some of the advanced concepts and ideas for IPv6
implementation and includes the following topics:
v “Tunneling”
v “Application migration and coexistence overview” on page 129
v “Application migration approaches” on page 131

Tunneling
When IPv6 or IPv6/IPv4 systems are separated from other similar systems that
they wish to communicate with by IPv4 networks, then IPv6 packets must be
tunneled through the IPv4 network. IPv6 packets are tunneled over IPv4 very
simply: the IPv6 packet is encapsulated in an IPv4 datagram, or in other words, a
complete IPv4 header is added to the IPv6 packet. The presence of the IPv6 packet
within the IPv4 datagram is indicated by a protocol value of 41 in the IPv4 header.

Restriction: z/OS Communications Server cannot function as an endpoint for this
type of tunnel.

While there are many tunneling protocols that can be used, all share the following
common features and processing characteristics:
v The source tunnel endpoint determines that an IPv6 packet needs to be tunneled

over an IPv4 network. This depends on the tunneling protocol that is used. After
this decision is made, the source tunnel endpoint adds an IPv4 header to the
IPv6 packet. The protocol value in the IPv4 header is set to 41. This indicates
that this is an IPv6 over IPv4 tunnel packet. The source and destination
addresses in the IPv4 header are set based on the tunneling protocol that is
used.

v At the destination tunnel endpoint, the IPv4 layer receives the IPv4 packet (or
packets, if the IPv4 datagram was fragmented). The IPv4 layer processes the
datagram in the normal way, reassembling fragments if necessary, and records
the protocol value of 41 in the IPv4 header. IPv4 security checks are made, and
the IPv4 header is removed, leaving the original IPv6 packet. The IPv6 packet is
processed as normal.

Figure 16 on page 126 shows a subset of the available tunneling protocols, with
descriptions of the more prevalent protocols. Others exist or are in the process of
being defined. Select one that is appropriate for your environment.

© Copyright IBM Corp. 2002, 2010 125

Configured tunnels
Configured tunneling refers to IPv6 over IPv4 tunneling, where the IPv4 tunnel
endpoint address is determined by configuration information on the encapsulating
node. The tunnels can be unidirectional or bidirectional. Bidirectional configured
tunnels act similarly as virtual point-to-point links. For each tunnel, the
encapsulating node must store the tunnel endpoint address. When an IPv6 packet
is transmitted over a tunnel, the tunnel endpoint address configured for that
tunnel is used as the destination address for the encapsulating IPv4 header.

Routing information on the encapsulating node usually determines which packets
to tunnel. This is typically done by way of a routing table, which directs packets
based on their destination address using the prefix mask and match technique.

Configured tunnels can be host-host, host-router, or router-router. Host-host
tunnels allow two IPv6/IPv4 nodes to send IPv6 packets directly to one another
without going through an intermediate IPv6 router. This can be useful if the
applications need to take advantage of IPv6 features that are not available in IPv4.

An IPv6/IPv4 host that is connected to datalinks with no IPv6 routers can use a
configured tunnel to reach an IPv6 router. This tunnel allows the host to
communicate with the rest of the IPv6 Internet. If the IPv4 address of an IPv6/IPv4
router bordering the IPv6 backbone is known, this can be used as the tunnel
endpoint address, and can be used as an IPv6 default route. This default route is
used only if a more specific route is not known.

Configured tunnels can also be used between routers, allowing isolated IPv6
networks to be connected by way of an IPv4 backbone. This connectivity can be
accomplished by arranging tunnels directly with each IPv6 site to which
connectivity is needed, but more typically it is done by arranging a tunnel into a

TCP, UDP, and RAW TCP, UDP, and RAW TCP, UDP, and RAW

IPv6 IPv4 and IPv6 IPv4 and IPv6

IPv6
Application

IPv6
Application

IPv6
Application

IPv6 Interface IPv4 Interface IPv4 Interface IPv4 Interface

IPv4 Network

Tunneling: encapsulate an IPv6
packet in an IPv4 packet and send
the IPv4 packet to the other tunnel
end-point IPv4 address

Network Interfaces Network Interfaces Network Interfaces

IPv6
Network

IPv4
Network

Figure 16. Tunneling

126 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

larger IPv6 routing infrastructure that can guarantee connectivity to all IPv6
end-user site networks. One example of this type of IPv6 routing infrastructure is
the 6bone.

When using configured tunnels, a peering relationship must be established
between the two IPv6 sites. This requires establishing a technical relationship with
the peer and working through the various low-level details of how to configure
tunnels between the two sites, including answering questions such as what peering
protocol is used (presumably, an IPv6-capable version of BGP4).

Automatic tunnels
Automatic tunnels provide a simple mechanism to establish IPv6 connectivity
between isolated dual-stack hosts, routers, or both. In automatic tunneling, the
IPv4 tunnel endpoint is determined from the IPv4 address embedded in the
IPv4-compatible destination address of the IPv6 packet being tunneled. If the
destination IPv6 address is IPv4-compatible, then the packet is sent by way of
automatic tunneling. If the destination is IPv6-native, the packet cannot be sent by
way of automatic tunneling. An IPv4-compatible address is identified by a ::/96
prefix and holds an IPv4 address in the low-order 32 bits. IPv4-compatible
addresses are assigned exclusively to nodes that support automatic tunneling. It is
globally unique as long as the IPv4 address is not from the private IPv4 address
space.

When an IPv6 packet is sent over an automatic tunnel, the IPv6 packet is
encapsulated within an IPv4 header as described in “Tunneling” on page 125. The
source IPv4 address is an address of the interface the packet is sent over, and the
destination IPv4 address is the low-order 32 bits of the IPv6 destination address.
The packet is always sent in this form, even if the tunnel endpoint is on an
attached link.

Automatic tunneling can be either host-host or router-host. A source host sends an
IPv6 packet to an IPv6 router if possible, but that router might not be able to do
the same and might have to perform automatic tunneling to the destination host
itself. Because of the preference for the use of IPv6 routers rather than automatic
tunneling, the tunnel is always as short as possible. However, the tunnel always
extends all the way to the destination host. In order to use a tunnel that does not
extend all the way to the recipient, another tunneling protocol must be used.

Guidelines: There are several issues to be aware of when using automatic tunnels.
Because of these issues, you should use other tunneling protocols,
such as 6to4 tunnels, in preference to automatic tunnels.
v Using automatic tunnels does not solve the address exhaustion

problem of IPv4, as it requires each tunnel endpoint to have an
IPv4 address from which the IPv4-compatible address is created.

v The use of IPv4-compatible addresses cause IPv4 addresses to be
included in the IPv6 routing table, which in turn can cause a
dramatic increase in the size of the IPv6 routing table.

6to4 addresses
The IANA has permanently assigned one 13-bit IPv6 Top Level Aggregator (TLA)
identifier under the IPv6 Format Prefix 001 for the 6to4 scheme. Its numeric value
is 0x2002, i.e., it is 2002::/16 when expressed as an IPv6 address prefix.

Chapter 10. Advanced concepts and topics 127

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

The format for a 6to4 address is shown in Figure 17:

Thus, this prefix has exactly the same format as normal /48 prefixes assigned
according to other aggregatable global unicast addresses. It can be abbreviated as
2002:V4ADDR::/48. Within the subscriber site it can be used exactly like any other
valid IPv6 prefix, for example, for automated address assignment and discovery
for native IPv6 routing, or for the 6over4 mechanism.

6to4 provides a mechanism to allow isolated IPv6 domains, attached to a wide area
network with no native IPv6 support, to communicate with other such IPv6
domains with minimal configuration. The idea is to embed IPv4 tunnel addresses
into the IPv6 prefixes so that any domain border router can automatically discover
tunnel endpoints for outbound IPv6 traffic.

The 6to4 transition mechanism advertises a site's IPv4 tunnel endpoint (to be used
for a dynamic tunnel) in a special external routing prefix for that site. When one
site tries to reach another site, it discovers the 6to4 tunnel endpoint from a DNS
name to address lookup and use a dynamically built tunnel from site to site for
communication. The tunnels are transient in that there is no state maintained for
them, lasting only as long as a specified transaction uses the path.

A 6to4 site identifies one or more routers to run as a dual-mode stack and to act as
a 6to4 router. A globally routable IPv4 address is assigned to the 6to4 router. The
6to4 prefix, which has the 6to4 router's IPv4 address embedded within it, is then
advertised by way of the Neighbor Discovery protocol to the 6to4 site, and this
prefix is used by hosts within the site to generate a global IPv6 address.

When one IPv6-enabled host at a 6to4 site tries to access an IPv6-enabled host by
domain name at another 6to4 site, the DNS returns the IPv6 IP address for that
host. The requesting host sends a packet to its nearest router, eventually reaching a
site's 6to4 router. When the site's 6to4 router receives the packet and sees that it
must send the packet to another site, and the next hop destination prefix is a
2002:://16 prefix, the IPv6 packet is encapsulated as described in “Tunneling” on
page 125. The source IPv4 address is the one in the requesting site's 6to4 prefix
(which is the IPv4 address of an outgoing interface for one of the site's 6to4
routers) and the destination IPv4 address is the one in the next hop destination
6to4 prefix of the IPv6 packet. When the destination site's 6to4 router receives the
IPv4 packet, the IPv4 header is removed, leaving the original IPv6 packet for local
forwarding.

6over4 tunnels
The Interface Identifier of an IPv4 interface using 6over4 is the 32-bit IPv4 address
of that interface, padded to the left with 0s and is 64 bits in length. Note that the
Universal/Local bit is 0, indicating that the Interface Identifier is not globally

64 bits16 bits 32 bits 16 bits

Interface ID0x0002 V4ADDR Subnet
ID

Figure 17. 6to4 address format

128 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

unique. When the host has more than one IPv4 address in use on the physical
interface concerned, an administrative choice of one of these IPv4 addresses is
made.

The IPv6 Link-local address for an IPv4 virtual interface is formed by appending
the Interface Identifier, as defined above, to the prefix FE80::/64.

Site-local and global unicast addresses are generated by prepending a 64-bit prefix
to the 6over4 Interface Identifier. These prefixes can be learned in any of the
normal ways, for example, as part of stateless address autoconfiguration or by way
of manual configuration.

6over4 is a transition mechanism which allows isolated IPv6 hosts, located on a
physical link which has no directly connected IPv6 router, to use an IPv4 multicast
domain as their virtual local link. A 6over4 host uses an IPv4 address for the
interface in the creation of the IPv6 interface ID, placing the 32-bit IPv4 address in
the low order bits and padding to the left with 0's for a total of 64 bits. The IPv6
prefix used is the normal IPv6 prefix, and can be manually configured or
dynamically learned by way of Stateless Address Autoconfiguration.

Because 6over4 creates a virtual link using IPv4 multicast, at least one IPv6 router
using the same method must be connected to the same IPv4 multicast domain if
IPv6 routing to other links is required.

When encapsulating the IPv6 packet, the source IP address for the IPv4 packet is
an IPv4 address from the sending interface of the 6over4 host. The destination IPv4
address is the low-order 32 bits of the IPv6 address of the next-hop for the packet.
Note that the final destination of the packet does not need to be a 6over4 host,
although it might be one.

Application migration and coexistence overview
Many IPv6 stacks support both IPv4 and IPv6 interfaces and are capable of
receiving and sending native IPv4 and IPv6 packets over the corresponding
interfaces. This type of TCP/IP stack is generally referred to as a dual-mode stack
IP node. This does not mean that there are two separate TCP/IP stacks running on
this type of node. It means that the TCP/IP stack has built-in support for both
IPv4 and IPv6. In this topic, the term dual-mode stack or IP node is a TCP/IP
stack that supports both IPv4 and IPv6 protocols.

32 bits32 bits3 bits 45 bits 16 bits

IPv4 address0...........0001 Network Subnet

Figure 18. 6over4 address format

Chapter 10. Advanced concepts and topics 129

For a multihomed dual-mode IP host, it is a likely configuration that the host has
both IPv4 and IPv6 interfaces over which requests for host-resident applications
are received or sent. Older AF_INET applications are only able to communicate
using IPv4 addresses. IPv6-enabled applications that use AF_INET6 sockets can
communicate using both IPv4 and IPv6 addresses (on a dual-mode host). AF_INET
and AF_INET6 applications are able to communicate with one another, but only
using IPv4 addresses.

If the socket libraries on the IPv6-enabled host are updated to support IPv6 sockets
(AF_INET6), applications can be IPv6 enabled. When an application on a dual
mode stack host is IPv6 enabled, the application is able to communicate with both
IPv4 and IPv6 partners. This is true for both clients and server on a dual-mode

Dual-mode stack IP Host

IPv4-only
Application

TCP, UDP, and RAW

IPv4 and IPv6

Network Interfaces

IPv4 Node IPv6 Node

IPv6-enabled
Application

IPv6
Network

IPv4
Network

Figure 19. Dual-mode stack IP host

130 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

stack host.

IPv6-enabling both sockets libraries and applications on dual-mode hosts therefore
becomes a migration concern. As soon as IPv6-only hosts are being deployed in a
network, applications on those IPv6-only nodes cannot communicate with the
IPv4-only applications on the dual mode hosts, unless one of multiple migration
technologies are implemented either on intermediate nodes in the network or
directly on the dual mode hosts.

Application migration approaches
The ultimate and preferred migration approach for applications that reside on a
dual-mode TCP/IP host is to IPv6-enable the applications by migrating them from
AF_INET sockets to AF_INET6 sockets.

There are multiple reasons why this approach is not always applicable, such as the
following:
v No access to the source code (vendor product, or source no longer available).
v The sockets API implementation does not yet (or never does) support IPv6.
v Resource availability or prioritization dictates a phased IPv6-enabling where not

all applications can be available in an IPv6-enabled version at the same point in
time where the stack is IPv6-capable.

For those applications that are not or cannot be IPv6 enabled, an alternative
migration strategy is needed. The IETF has identified multiple approaches as
summarized in draft RFC, An Overview of the Introduction of IPv6 in the Internet.

Some of the technologies that are defined by the IETF are supposed to be
implemented on intermediate nodes that route traffic between IPv4 and IPv6
network segments. Other technologies are intended for implementation on the dual
mode IP nodes themselves.

Translation mechanisms
This topic provides an introduction to a few transition mechanisms that can be
used when migrating to an IPv6 network.

The key to successful adoption and deployment of IPv6 is the transition from the
installed IPv4 base. The goal of all transition strategies is to facilitate the partial
and incremental upgrade of hosts, servers, routers, and network infrastructure.
There are many possible approaches, and some of the more likely approaches are
described below. The transition strategy a company chooses to take varies based on
the particular needs of that company.

Appl. on a dual mode host

IPv4-only partner

IPv4-only IPv6-enabled

IPv6-only partner

Figure 20. Application communication on a dual-mode host

Chapter 10. Advanced concepts and topics 131

Several migration issues must be addressed when the backbone routing protocol is
IPv4. First, a mechanism is needed to allow communication between islands of
IPv6 networks that are interconnected only using the IPv4 backbone. Tunneling of
IPv6 packets over the IPv4 network can be used to connect the clouds. Second,
end-to-end communication between IPv4 and IPv6 applications must be enabled.
Several approaches to accomplish this exist; Application Layer Gateways, NAT-PT,
and Bump-in-the-Stack are all possibilities. During the migration phase, it is likely
that a combination of one, multiple, or all of these transition mechanisms can be
used.

Application Layer Gateways (ALGs) allow an IPv6-only applications to
communicate to an IPv4-only peer. Using an ALG, the client connects to the ALG
using its native protocol (IPv4 or IPv6) and the ALG connects to the server using
the other protocol (IPv6 or IPv4, respectively).

SOCKS gateway
A SOCKS gateway is a method of providing an ALG. The SOCKS64
implementation works as a SOCKS server that relays communication between IPv4
and IPv6 flows. Servers do not require any changes, but client applications (or the
stack where the client applications reside) need to be socksified to be able to reach
out through a SOCKS64 server to an IPv6-only partner.

Proxy
Protocol translation involves converting IPv4 packets into IPv6 packets and vice
versa. This translation typically involves some form of network address translation
(NAT) in addition to the protocol translation (PT) function. It might execute in a
specialized node that resides between an IPv4 network and an IPv6 network, or it
might execute in the host that owns the IPv4 application.

Protocol Translation is useful when devices need to communicate but are not using
the same protocol, allowing IPv6-only devices to communicate with IPv4-only
devices. However, the following issues make a less-than ideal solution:
v Protocol translation is not foolproof. It is difficult to determine exactly how long

to keep the mappings between the real IPv6 address and the locally mapped
IPv4 address available. Eventually, an address is going to be reused before all
servers have stopped accessing the address.

v Some applications might use the remote IP address as a means of performing a
security check. Unless AH or an IPSec tunnel is used, then this method is not
foolproof, but it is still done. If the IPv4 address is a locally mapped address,
any checks such as this are broken.

v Displays and traces of the remote IP address are meaningless. Today, many
applications generate messages, traces, and so on containing the IP address of
the remote client.

v All DNS queries for the IPv4-mapped address must flow through the node that
performed the NAT function. The DNS resolver or name server at this node, as
well as the TCP/IP stack, must maintain a mapping between the IPv4 address
and IPv6 address.

v Not all IPv6 protocols have IPv4 equivalents and vice versa. As such, it might
not be possible to translate the contents of an IPv4 packet into an equivalent
IPv6 packet and vice versa.

Stateless IP/ICMP Translation Algorithm
This algorithm translates between IPv4 and IPv6 packet headers (including ICMP
headers) in separate translator boxes in the network without requiring any
per-connection state in those boxes. Stateless IP/ICMP Translation Algorithm (SIIT)

132 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

can be used as part of a solution that allows IPv6 hosts, which do not have
permanently assigned IPv4 addresses, to communicate with IPv4-only hosts.

Network address translation - protocol translation
Protocol translation can occur at a specialized node that resides between IPv4 and
IPv6 networks. This node is typically referred to as a Network address translation -
protocol translation (NAT-PT) device because it must translate between the IPv4
and IPv6 addresses, as well as between the IPv4 and IPv6 protocols.

An NAT-PT node plays a similar role to an ALG. Both nodes allow IPv4-only
applications to communicate with IPv6-only peers, and both reside in similar
places in the network. However, each takes a different approach to accomplish a
similar goal.

SOCKS64 is a proxy solution and requires client applications to be updated to use
SOCKS64. NAT-PT is not a proxy and requires no changes to either the client or
server. Based solely on this, NAT-PT might appear to be a superior solution.
However, due to the limitations of NAT-PT and familiarity with SOCKS, it is more
likely that SOCKS64 is used to allow IPv4-only applications to communicate with
IPv6-only peers.

Chapter 10. Advanced concepts and topics 133

134 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Appendix A. IPv6 support tables

This appendix contains the IPv6 support tables and includes the following topics:
v “Supported IPv6 standards”
v “z/OS-specific features” on page 137
v “Applications not enabled for IPv6” on page 140

Supported IPv6 standards

Table 29 lists the supported IPv6 standards. RFCs are not implemented in their
entirety.

Table 29. Supported IPv6 standards

Standard RFC or Internet Draft

DNS Extensions to support IP version 6 1886

Path MTU discovery 1981

RIPng for IPv6 2080

An IPv6 Aggregatable Global Unicast Address Format 2374

FTP Extensions for IPv6 and NATs 2428

Internet Protocol, Version 6 (IPv6) Specification 2460

Neighbor discovery for IP Version 6 (IPv6) 2461

IPv6 Stateless Address Autoconfiguration 2462

Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specification

2463

Transmission of IPv6 Packets over Ethernet Networks 2464

Multicast Listener Discovery (MLD) for IPv6 2710

IPv6 Router Alert Option 2711

OSPF for IPv6 2740

DNS Extensions to Support IPv6 Address Aggregation
and Renumbering

2874

Default Address Selection for Internet Protocol Version
6 (IPv6)

3484

Basic Socket Interface Extensions for IPv6 3493

Internet Protocol Version 6 (IPv6) Addressing
Architecture

3513

Advanced Sockets Application Programming Interface
(API) for IPv6

3542

Multicast Listener Discovery Version 2 (MLDv2) for
IPv6

3810

Socket Interface Extensions for Multicast Source Filters 3678

IPv6 Scoped Address Architecture 4007

IPv6 Socket for Source Address Selection 5014

© Copyright IBM Corp. 2002, 2010 135

||

Application support of scope information on host name or IP address
Table 30 lists the applications that accept scope information (for example, interface
name or interface index) as part of a user-specified or user-configured host name
or IPv6 address. The topic of scope information is described in more detail in
“Support for scope information” on page 58.

Table 30. Application support for scope information

Application Support level

FTP client 1. Scope information can be specified on
host name or IPv6 address provided as
command input.

2. Scope information can be specified on
host name or IPv6 address provided as
input on the OPEN subcommand.

3. Scope information can be specified on
host names or IPv6 addresses in NETRC
configuration information

FTP server Scope information can appear in SMF
records or in banner lines.

MVRSHD Scope information can be specified on host
names coded in userid.RHOSTS.DATA
configuration file

Ping 1. Scope information can be specified on
host name or IPv6 address representing
the destination host.

2. Scope information cannot be specified as
part of the source IP address operand.

3. Scope information cannot be specified as
part of the interface operand

REXEC/OREXEC Scope information can be specified on host
name or IPv6 address provided on
command input.

RSH/ORSH Scope information can be specified on host
name or IPv6 address provided on
command input.

Syslogd 1. Scope information can appear as part of
host name information generated as
syslog output.

2. Scope information can not be specified as
part of selector host name information

Traceroute 1. Scope information can be specified on
host name or IPv6 address representing
the destination host.

2. Scope information cannot be specified as
part of the source IP address operand.

3. Scope information cannot be specified as
part of the interface operand

136 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

z/OS-specific features

The tables in this topic summarize z/OS TCP/IP features and the level of support
provided in an IPv6 network. In the future, additional features are projected for
IPv6 support in subsequent releases of the z/OS Communications Server.

Table 31 lists the link-layer device support.

Table 31. Link-layer device support

Link-layer device support
IPv4
support

IPv6
support Comments

OSA-Express in QDIO
mode

Y Y Fast and Gigabit Ethernet support for
IPv6 traffic is configured by way of an
INTERFACE statement of type
IPAQENET6.

CTC Y N None

LCS Y N None

CLAW Y N None

CDLC (3745/3746) Y N None

SNALINK LU0 and LU6.2 Y N None

X.25 NPSI Y N None

NSC HyperChannel Y N None

MPC Point-Point Y Y Support is configured by way of an
INTERFACE statement of type
MPCPTP6.

ATM Y N None

HiperSockets Y Y Support is configured by way of an
INTERFACE statement of type
IPAQIDIO6 or dynamically configured
by way of the IPCONFIG6
DYNAMICXCF statement.

XCF Y Y Support is configured by way of an
INTERFACE statement of type
MPCPTP6 or dynamically configured
by way of the IPCONFIG6
DYNAMICXCF statement.

Table 32 lists virtual IP Addressing support.

Table 32. Virtual IP Addressing support

Virtual IP Addressing
support IPv4 support IPv6 support Comments

Virtual Device/Interface
Configuration for static
VIPA

Y Y None

All sysplex functions support IPv6 except for those listed in Table 33 on page 138.

Appendix A. IPv6 support tables 137

Table 33. Sysplex support

Sysplex support IPv4 support IPv6 support Comments

Sysplex distributor
integration with Cisco
MNLB

Y N None

Sysplex Wide Security
Associations (SWSA)

Y N None

Table 34 lists IP routing functions.

Table 34. IP routing functions

IP routing functions IPv4 support IPv6 support Comments

Dynamic Routing - OSPF Y Y None

Dynamic Routing - RIP Y Y None

Multipath Routing Groups Y Y None

Policy-based Routing Y N None

Static Route Configuration
by way of BEGINROUTES
statement

Y Y None

Static Route Configuration
by way of GATEWAY
statement

Y N None

Table 35 lists miscellaneous IP/IF-layer functions.

Table 35. Miscellaneous IP/IF-layer functions

Miscellaneous IP/IF-layer
functions IPv4 support IPv6 support Comments

Path MTU Discovery Y Y None

Configurable Device or
Interface Recovery Interval

Y Y None

Link-Layer Address
Resolution

Y Y None

ARP/Neighbor Cache
PURGE Capability

Y Y None

Datagram Forwarding
Enable/Disable

Y Y None

HiperSockets accelerator Y N Enable support with the
IQDIOROUTING parameter
on the IPCONFIG statement.

QDIO Accelerator Y N Enable support with the
QDIOACCELERATOR
parameter on the IPCONFIG
statement.

Checksum offload Y N None

Segmentation offload Y N None

QDIO inbound workload
queueing

Y N None

138 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

||||
|
|
|

|
|
|||

Table 36 lists transport-layer functions.

Table 36. Transport-layer functions

Transport-layer functions IPv4 support IPv6 support Comments

Fast Response Cache
Accelerator

Y Y None

Enterprise Extender Y Y IPv6 Enterprise Extender
support requires a virtual IP
address configured by way
of an INTERFACE statement
of type VIRTUAL6 and
IUTSAMEH configured by
way of an INTERFACE
statement of type MPCPTP6
or dynamically configured
by way of IPCONFIG6
DYNAMICXCF.

Server-BIND Control Y Y None

UDP Checksum
Disablement Option

Y N None

Table 37 lists network management and accounting functions.

Table 37. Network management and accounting functions

Network management and
accounting Functions IPv4 support IPv6 support Comments

SNMP Y Y None

SNMP agent Y Y None

TCP/IP subagent Y Y No IPv6 UDP support

Network SLAPM2 subagent Y Y None

Distributed Protocol
Interface

Y Y None

OMPROUTE subagent Y N None

Trap forwarder daemon Y Y None

Policy-Based Networking Y Y None

SMF Y Y None

TN3270 subagent Y Y None

Table 38 lists security functions.

Table 38. Security functions

Security functions IPv4 support IPv6 support Comments

IPSec Y Y None

IP filtering Y Y None

IKE daemon Y Y None

NAT traversal Y N None

Network Access Control Y Y None

Stack and Port Access
Control

Y Y None

Appendix A. IPv6 support tables 139

Table 38. Security functions (continued)

Security functions IPv4 support IPv6 support Comments

Application Transparent TLS Y Y None

Intrusion Detection Services Y N None

Applications not enabled for IPv6

Some applications are not enabled for IPv6. These applications are listed in
Table 39, Table 40, and Table 41.

Table 39. Server applications not enabled for IPv6

Server applications
IPv4
support

IPv6
support

SMTPPROC/NJE server Y N

Rlogind server Y N

MVS Miscellaneous server Y N

Popper Y N

MVS LPD server Y N

TIMED server Y N

NCS LLBD and GLBD servers Y N

ONC/RPC MVS portmapper Y N

ONC/RPC UNIX portmapper Y N

NCPROUTE Y N

NPF Y N

RSVP daemon Y N

Table 40. Client applications not enabled for IPv6

Client applications
IPv4
support

IPv6
support

TSO TELNET client Y N

TSO LPR client Y N

Table 41. Command-type applications not enabled for IPv6

Command-type applications
IPv4
support

IPv6
support

TSO DIG Y N

TSO LPRM Y N

TSO NSLOOKUP Y N

TSO RPCINFO Y N

UNIX dig Y N

UNIX host Y N

UNIX hostname Y N

UNIX rpcinfo Y N

140 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|||

|||

Appendix B. Related protocol specifications

This appendix lists the related protocol specifications (RFCs) for TCP/IP. The
Internet Protocol suite is still evolving through requests for comments (RFC). New
protocols are being designed and implemented by researchers and are brought to
the attention of the Internet community in the form of RFCs. Some of these
protocols are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

You can request RFCs through electronic mail, from the automated Network
Information Center (NIC) mail server, by sending a message to
service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject
line of RFC nnnn.PS for PostScript® versions. To request a copy of the RFC index,
send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by
subscription. Online copies are available at the following Web address:
http://www.rfc-editor.org/rfc.html.

Draft RFCs that have been implemented in this and previous Communications
Server releases are listed at the end of this topic.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

RFC 652
Telnet output carriage-return disposition option D. Crocker

RFC 653
Telnet output horizontal tabstops option D. Crocker

RFC 654
Telnet output horizontal tab disposition option D. Crocker

RFC 655
Telnet output formfeed disposition option D. Crocker

RFC 657
Telnet output vertical tab disposition option D. Crocker

RFC 658
Telnet output linefeed disposition D. Crocker

RFC 698
Telnet extended ASCII option T. Mock

© Copyright IBM Corp. 2002, 2010 141

http://www.rfc-editor.org/rfc.html

RFC 726
Remote Controlled Transmission and Echoing Telnet option J. Postel, D. Crocker

RFC 727
Telnet logout option M.R. Crispin

RFC 732
Telnet Data Entry Terminal option J.D. Day

RFC 733
Standard for the format of ARPA network text messages D. Crocker, J. Vittal,
K.T. Pogran, D.A. Henderson

RFC 734
SUPDUP Protocol M.R. Crispin

RFC 735
Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

RFC 736
Telnet SUPDUP option M.R. Crispin

RFC 749
Telnet SUPDUP—Output option B. Greenberg

RFC 765
File Transfer Protocol specification J. Postel

RFC 768
User Datagram Protocol J. Postel

RFC 779
Telnet send-location option E. Killian

RFC 783
TFTP Protocol (revision 2) K.R. Sollins

RFC 791
Internet Protocol J. Postel

RFC 792
Internet Control Message Protocol J. Postel

RFC 793
Transmission Control Protocol J. Postel

RFC 820
Assigned numbers J. Postel

RFC 821
Simple Mail Transfer Protocol J. Postel

RFC 822
Standard for the format of ARPA Internet text messages D. Crocker

RFC 823
DARPA Internet gateway R. Hinden, A. Sheltzer

RFC 826
Ethernet Address Resolution Protocol: Or converting network protocol addresses
to 48.bit Ethernet address for transmission on Ethernet hardware D. Plummer

RFC 854
Telnet Protocol Specification J. Postel, J. Reynolds

142 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 855
Telnet Option Specification J. Postel, J. Reynolds

RFC 856
Telnet Binary Transmission J. Postel, J. Reynolds

RFC 857
Telnet Echo Option J. Postel, J. Reynolds

RFC 858
Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

RFC 859
Telnet Status Option J. Postel, J. Reynolds

RFC 860
Telnet Timing Mark Option J. Postel, J. Reynolds

RFC 861
Telnet Extended Options: List Option J. Postel, J. Reynolds

RFC 862
Echo Protocol J. Postel

RFC 863
Discard Protocol J. Postel

RFC 864
Character Generator Protocol J. Postel

RFC 865
Quote of the Day Protocol J. Postel

RFC 868
Time Protocol J. Postel, K. Harrenstien

RFC 877
Standard for the transmission of IP datagrams over public data networks J.T.
Korb

RFC 883
Domain names: Implementation specification P.V. Mockapetris

RFC 884
Telnet terminal type option M. Solomon, E. Wimmers

RFC 885
Telnet end of record option J. Postel

RFC 894
Standard for the transmission of IP datagrams over Ethernet networks C. Hornig

RFC 896
Congestion control in IP/TCP internetworks J. Nagle

RFC 903
Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul, M.
Theimer

RFC 904
Exterior Gateway Protocol formal specification D. Mills

RFC 919
Broadcasting Internet Datagrams J. Mogul

Appendix B. Related protocol specifications 143

RFC 922
Broadcasting Internet datagrams in the presence of subnets J. Mogul

RFC 927
TACACS user identification Telnet option B.A. Anderson

RFC 933
Output marking Telnet option S. Silverman

RFC 946
Telnet terminal location number option R. Nedved

RFC 950
Internet Standard Subnetting Procedure J. Mogul, J. Postel

RFC 952
DoD Internet host table specification K. Harrenstien, M. Stahl, E. Feinler

RFC 959
File Transfer Protocol J. Postel, J.K. Reynolds

RFC 961
Official ARPA-Internet protocols J.K. Reynolds, J. Postel

RFC 974
Mail routing and the domain system C. Partridge

RFC 1001
Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and
methods NetBios Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, End-to-End Services Task Force

RFC 1002
Protocol Standard for a NetBIOS service on a TCP/UDP transport: Detailed
specifications NetBios Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, End-to-End Services Task Force

RFC 1006
ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E. Cass

RFC 1009
Requirements for Internet gateways R. Braden, J. Postel

RFC 1011
Official Internet protocols J. Reynolds, J. Postel

RFC 1013
X Window System Protocol, version 11: Alpha update April 1987 R. Scheifler

RFC 1014
XDR: External Data Representation standard Sun Microsystems

RFC 1027
Using ARP to implement transparent subnet gateways S. Carl-Mitchell, J.
Quarterman

RFC 1032
Domain administrators guide M. Stahl

RFC 1033
Domain administrators operations guide M. Lottor

RFC 1034
Domain names—concepts and facilities P.V. Mockapetris

144 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1035
Domain names—implementation and specification P.V. Mockapetris

RFC 1038
Draft revised IP security option M. St. Johns

RFC 1041
Telnet 3270 regime option Y. Rekhter

RFC 1042
Standard for the transmission of IP datagrams over IEEE 802 networks J. Postel,
J. Reynolds

RFC 1043
Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda, T.
Thompson

RFC 1044
Internet Protocol on Network System's HYPERchannel: Protocol specification K.
Hardwick, J. Lekashman

RFC 1053
Telnet X.3 PAD option S. Levy, T. Jacobson

RFC 1055
Nonstandard for transmission of IP datagrams over serial lines: SLIP J. Romkey

RFC 1057
RPC: Remote Procedure Call Protocol Specification: Version 2 Sun Microsystems

RFC 1058
Routing Information Protocol C. Hedrick

RFC 1060
Assigned numbers J. Reynolds, J. Postel

RFC 1067
Simple Network Management Protocol J.D. Case, M. Fedor, M.L. Schoffstall, J.
Davin

RFC 1071
Computing the Internet checksum R.T. Braden, D.A. Borman, C. Partridge

RFC 1072
TCP extensions for long-delay paths V. Jacobson, R.T. Braden

RFC 1073
Telnet window size option D. Waitzman

RFC 1079
Telnet terminal speed option C. Hedrick

RFC 1085
ISO presentation services on top of TCP/IP based internets M.T. Rose

RFC 1091
Telnet terminal-type option J. VanBokkelen

RFC 1094
NFS: Network File System Protocol specification Sun Microsystems

RFC 1096
Telnet X display location option G. Marcy

RFC 1101
DNS encoding of network names and other types P. Mockapetris

Appendix B. Related protocol specifications 145

RFC 1112
Host extensions for IP multicasting S.E. Deering

RFC 1113
Privacy enhancement for Internet electronic mail: Part I — message encipherment
and authentication procedures J. Linn

RFC 1118
Hitchhikers Guide to the Internet E. Krol

RFC 1122
Requirements for Internet Hosts—Communication Layers R. Braden, Ed.

RFC 1123
Requirements for Internet Hosts—Application and Support R. Braden, Ed.

RFC 1146
TCP alternate checksum options J. Zweig, C. Partridge

RFC 1155
Structure and identification of management information for TCP/IP-based
internets M. Rose, K. McCloghrie

RFC 1156
Management Information Base for network management of TCP/IP-based internets
K. McCloghrie, M. Rose

RFC 1157
Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M.
Schoffstall, J. Davin

RFC 1158
Management Information Base for network management of TCP/IP-based
internets: MIB-II M. Rose

RFC 1166
Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

RFC 1179
Line printer daemon protocol L. McLaughlin

RFC 1180
TCP/IP tutorial T. Socolofsky, C. Kale

RFC 1183
New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris

RFC 1184
Telnet Linemode Option D. Borman

RFC 1186
MD4 Message Digest Algorithm R.L. Rivest

RFC 1187
Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

RFC 1188
Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D.
Katz

RFC 1190
Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

146 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1191
Path MTU discovery J. Mogul, S. Deering

RFC 1198
FYI on the X window system R. Scheifler

RFC 1207
FYI on Questions and Answers: Answers to commonly asked “experienced
Internet user” questions G. Malkin, A. Marine, J. Reynolds

RFC 1208
Glossary of networking terms O. Jacobsen, D. Lynch

RFC 1213
Management Information Base for Network Management of TCP/IP-based
internets: MIB-II K. McCloghrie, M.T. Rose

RFC 1215
Convention for defining traps for use with the SNMP M. Rose

RFC 1227
SNMP MUX protocol and MIB M.T. Rose

RFC 1228
SNMP-DPI: Simple Network Management Protocol Distributed Program Interface
G. Carpenter, B. Wijnen

RFC 1229
Extensions to the generic-interface MIB K. McCloghrie

RFC 1230
IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

RFC 1231
IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

RFC 1236
IP to X.121 address mapping for DDN L. Morales, P. Hasse

RFC 1256
ICMP Router Discovery Messages S. Deering, Ed.

RFC 1267
Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

RFC 1268
Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

RFC 1269
Definitions of Managed Objects for the Border Gateway Protocol: Version 3 S.
Willis, J. Burruss

RFC 1270
SNMP Communications Services F. Kastenholz, ed.

RFC 1285
FDDI Management Information Base J. Case

RFC 1315
Management Information Base for Frame Relay DTEs C. Brown, F. Baker, C.
Carvalho

RFC 1321
The MD5 Message-Digest Algorithm R. Rivest

Appendix B. Related protocol specifications 147

RFC 1323
TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

RFC 1325
FYI on Questions and Answers: Answers to Commonly Asked "New Internet
User" Questions G. Malkin, A. Marine

RFC 1327
Mapping between X.400 (1988)/ISO 10021 and RFC 822 S. Hardcastle-Kille

RFC 1340
Assigned Numbers J. Reynolds, J. Postel

RFC 1344
Implications of MIME for Internet Mail Gateways N. Bornstein

RFC 1349
Type of Service in the Internet Protocol Suite P. Almquist

RFC 1350
The TFTP Protocol (Revision 2) K.R. Sollins

RFC 1351
SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

RFC 1352
SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

RFC 1353
Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

RFC 1354
IP Forwarding Table MIB F. Baker

RFC 1356
Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D.
Robinson, R. Ullmann

RFC 1358
Charter of the Internet Architecture Board (IAB) L. Chapin

RFC 1363
A Proposed Flow Specification C. Partridge

RFC 1368
Definition of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K.
McCloghrie

RFC 1372
Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

RFC 1374
IP and ARP on HIPPI J. Renwick, A. Nicholson

RFC 1381
SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

RFC 1382
SNMP MIB Extension for the X.25 Packet Layer D. Throop

RFC 1387
RIP Version 2 Protocol Analysis G. Malkin

RFC 1388
RIP Version 2 Carrying Additional Information G. Malkin

148 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1389
RIP Version 2 MIB Extensions G. Malkin, F. Baker

RFC 1390
Transmission of IP and ARP over FDDI Networks D. Katz

RFC 1393
Traceroute Using an IP Option G. Malkin

RFC 1398
Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

RFC 1408
Telnet Environment Option D. Borman, Ed.

RFC 1413
Identification Protocol M. St. Johns

RFC 1416
Telnet Authentication Option D. Borman, ed.

RFC 1420
SNMP over IPX S. Bostock

RFC 1428
Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G. Vaudreuil

RFC 1442
Structure of Management Information for version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1443
Textual Conventions for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1445
Administrative Model for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Galvin, K. McCloghrie

RFC 1447
Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)
K. McCloghrie, J. Galvin

RFC 1448
Protocol Operations for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1464
Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

RFC 1469
IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483
Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha Heinanen

RFC 1514
Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516
Definitions of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster,
K. McCloghrie

Appendix B. Related protocol specifications 149

RFC 1521
MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for
Specifying and Describing the Format of Internet Message Bodies N. Borenstein,
N. Freed

RFC 1535
A Security Problem and Proposed Correction With Widely Deployed DNS
Software E. Gavron

RFC 1536
Common DNS Implementation Errors and Suggested Fixes A. Kumar, J. Postel,
C. Neuman, P. Danzig, S. Miller

RFC 1537
Common DNS Data File Configuration Errors P. Beertema

RFC 1540
Internet Official Protocol Standards J. Postel

RFC 1571
Telnet Environment Option Interoperability Issues D. Borman

RFC 1572
Telnet Environment Option S. Alexander

RFC 1573
Evolution of the Interfaces Group of MIB-II K. McCloghrie, F. Kastenholz

RFC 1577
Classical IP and ARP over ATM M. Laubach

RFC 1583
OSPF Version 2 J. Moy

RFC 1591
Domain Name System Structure and Delegation J. Postel

RFC 1592
Simple Network Management Protocol Distributed Protocol Interface Version 2.0
B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

RFC 1594
FYI on Questions and Answers— Answers to Commonly Asked "New Internet
User" Questions A. Marine, J. Reynolds, G. Malkin

RFC 1644
T/TCP — TCP Extensions for Transactions Functional Specification R. Braden

RFC 1646
TN3270 Extensions for LUname and Printer Selection C. Graves, T. Butts, M.
Angel

RFC 1647
TN3270 Enhancements B. Kelly

RFC 1652
SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed, M.
Rose, E. Stefferud, D. Crocker

RFC 1664
Using the Internet DNS to Distribute RFC1327 Mail Address Mapping Tables C.
Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

RFC 1693
An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P. Conrad

150 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1695
Definitions of Managed Objects for ATM Management Version 8.0 using SMIv2
M. Ahmed, K. Tesink

RFC 1701
Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P. Traina

RFC 1702
Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D.
Farinacci, P. Traina

RFC 1706
DNS NSAP Resource Records B. Manning, R. Colella

RFC 1712
DNS Encoding of Geographical Location C. Farrell, M. Schulze, S. Pleitner D.
Baldoni

RFC 1713
Tools for DNS debugging A. Romao

RFC 1723
RIP Version 2—Carrying Additional Information G. Malkin

RFC 1752
The Recommendation for the IP Next Generation Protocol S. Bradner, A. Mankin

RFC 1766
Tags for the Identification of Languages H. Alvestrand

RFC 1771
A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

RFC 1794
DNS Support for Load Balancing T. Brisco

RFC 1819
Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version ST2+ L.
Delgrossi, L. Berger Eds.

RFC 1826
IP Authentication Header R. Atkinson

RFC 1828
IP Authentication using Keyed MD5 P. Metzger, W. Simpson

RFC 1829
The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

RFC 1830
SMTP Service Extensions for Transmission of Large and Binary MIME Messages
G. Vaudreuil

RFC 1831
RPC: Remote Procedure Call Protocol Specification Version 2 R. Srinivasan

RFC 1832
XDR: External Data Representation Standard R. Srinivasan

RFC 1833
Binding Protocols for ONC RPC Version 2 R. Srinivasan

RFC 1850
OSPF Version 2 Management Information Base F. Baker, R. Coltun

Appendix B. Related protocol specifications 151

RFC 1854
SMTP Service Extension for Command Pipelining N. Freed

RFC 1869
SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud, D.
Crocker

RFC 1870
SMTP Service Extension for Message Size Declaration J. Klensin, N. Freed, K.
Moore

RFC 1876
A Means for Expressing Location Information in the Domain Name System C.
Davis, P. Vixie, T. Goodwin, I. Dickinson

RFC 1883
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 1884
IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

RFC 1886
DNS Extensions to support IP version 6 S. Thomson, C. Huitema

RFC 1888
OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J.
Houldsworth, A. Lloyd

RFC 1891
SMTP Service Extension for Delivery Status Notifications K. Moore

RFC 1892
The Multipart/Report Content Type for the Reporting of Mail System
Administrative Messages G. Vaudreuil

RFC 1894
An Extensible Message Format for Delivery Status NotificationsK. Moore, G.
Vaudreuil

RFC 1901
Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M. Rose,
S. Waldbusser

RFC 1902
Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1903
Textual Conventions for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1904
Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1905
Protocol Operations for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1906
Transport Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

152 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 1907
Management Information Base for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1908
Coexistence between Version 1 and Version 2 of the Internet-standard Network
Management Framework J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1912
Common DNS Operational and Configuration Errors D. Barr

RFC 1918
Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

RFC 1928
SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
L. Jones

RFC 1930
Guidelines for creation, selection, and registration of an Autonomous System (AS)
J. Hawkinson, T. Bates

RFC 1939
Post Office Protocol-Version 3 J. Myers, M. Rose

RFC 1981
Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

RFC 1982
Serial Number Arithmetic R. Elz, R. Bush

RFC 1985
SMTP Service Extension for Remote Message Queue Starting J. De Winter

RFC 1995
Incremental Zone Transfer in DNS M. Ohta

RFC 1996
A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P. Vixie

RFC 2010
Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011
SNMPv2 Management Information Base for the Internet Protocol using SMIv2
K. McCloghrie, Ed.

RFC 2012
SNMPv2 Management Information Base for the Transmission Control Protocol
using SMIv2 K. McCloghrie, Ed.

RFC 2013
SNMPv2 Management Information Base for the User Datagram Protocol using
SMIv2 K. McCloghrie, Ed.

RFC 2018
TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S. Floyd, A.
Romanow

RFC 2026
The Internet Standards Process — Revision 3 S. Bradner

Appendix B. Related protocol specifications 153

RFC 2030
Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI D.
Mills

RFC 2033
Local Mail Transfer Protocol J. Myers

RFC 2034
SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040
The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR. Baldwin, R.
Rivest

RFC 2045
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies N. Freed, N. Borenstein

RFC 2052
A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen,
P. Vixie

RFC 2065
Domain Name System Security Extensions D. Eastlake 3rd, C. Kaufman

RFC 2066
TELNET CHARSET Option R. Gellens

RFC 2080
RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096
IP Forwarding Table MIB F. Baker

RFC 2104
HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare,
R. Canetti

RFC 2119
Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2133
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound,
W. Stevens

RFC 2136
Dynamic Updates in the Domain Name System (DNS UPDATE) P. Vixie, Ed.,
S. Thomson, Y. Rekhter, J. Bound

RFC 2137
Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163
Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping (MCGAM) C. Allocchio

RFC 2168
Resolution of Uniform Resource Identifiers using the Domain Name System R.
Daniel, M. Mealling

RFC 2178
OSPF Version 2 J. Moy

RFC 2181
Clarifications to the DNS Specification R. Elz, R. Bush

154 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 2205
Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification R.
Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin

RFC 2210
The Use of RSVP with IETF Integrated Services J. Wroclawski

RFC 2211
Specification of the Controlled-Load Network Element Service J. Wroclawski

RFC 2212
Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.
Guerin

RFC 2215
General Characterization Parameters for Integrated Service Network Elements S.
Shenker, J. Wroclawski

RFC 2217
Telnet Com Port Control Option G. Clarke

RFC 2219
Use of DNS Aliases for Network Services M. Hamilton, R. Wright

RFC 2228
FTP Security Extensions M. Horowitz, S. Lunt

RFC 2230
Key Exchange Delegation Record for the DNS R. Atkinson

RFC 2233
The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

RFC 2240
A Legal Basis for Domain Name Allocation O. Vaughn

RFC 2246
The TLS Protocol Version 1.0 T. Dierks, C. Allen

RFC 2251
Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

RFC 2253
Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names M. Wahl, S. Kille, T. Howes

RFC 2254
The String Representation of LDAP Search Filters T. Howes

RFC 2261
An Architecture for Describing SNMP Management Frameworks D. Harrington,
R. Presuhn, B. Wijnen

RFC 2262
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 2271
An Architecture for Describing SNMP Management Frameworks D. Harrington,
R. Presuhn, B. Wijnen

RFC 2273
SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

Appendix B. Related protocol specifications 155

RFC 2274
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2275
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2279
UTF-8, a transformation format of ISO 10646 F. Yergeau

RFC 2292
Advanced Sockets API for IPv6 W. Stevens, M. Thomas

RFC 2308
Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

RFC 2317
Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

RFC 2320
Definitions of Managed Objects for Classical IP and ARP Over ATM Using
SMIv2 (IPOA-MIB) M. Greene, J. Luciani, K. White, T. Kuo

RFC 2328
OSPF Version 2 J. Moy

RFC 2345
Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G. Oglesby

RFC 2352
A Convention for Using Legal Names as Domain Names O. Vaughn

RFC 2355
TN3270 Enhancements B. Kelly

RFC 2358
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J.
Johnson

RFC 2373
IP Version 6 Addressing Architecture R. Hinden, S. Deering

RFC 2374
An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O'Dell, S.
Deering

RFC 2375
IPv6 Multicast Address Assignments R. Hinden, S. Deering

RFC 2385
Protection of BGP Sessions via the TCP MD5 Signature Option A. Hefferman

RFC 2389
Feature negotiation mechanism for the File Transfer Protocol P. Hethmon, R. Elz

RFC 2401
Security Architecture for Internet Protocol S. Kent, R. Atkinson

RFC 2402
IP Authentication Header S. Kent, R. Atkinson

RFC 2403
The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

156 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 2404
The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R. Glenn

RFC 2405
The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N.
Doraswamy

RFC 2406
IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

RFC 2407
The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

RFC 2408
Internet Security Association and Key Management Protocol (ISAKMP) D.
Maughan, M. Schertler, M. Schneider, J. Turner

RFC 2409
The Internet Key Exchange (IKE) D. Harkins, D. Carrel

RFC 2410
The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S. Kent,

RFC 2428
FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

RFC 2445
Internet Calendaring and Scheduling Core Object Specification (iCalendar) F.
Dawson, D. Stenerson

RFC 2459
Internet X.509 Public Key Infrastructure Certificate and CRL Profile R. Housley,
W. Ford, W. Polk, D. Solo

RFC 2460
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 2461
Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.
Simpson

RFC 2462
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

RFC 2463
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification A. Conta, S. Deering

RFC 2464
Transmission of IPv6 Packets over Ethernet Networks M. Crawford

RFC 2466
Management Information Base for IP Version 6: ICMPv6 Group D. Haskin, S.
Onishi

RFC 2476
Message Submission R. Gellens, J. Klensin

RFC 2487
SMTP Service Extension for Secure SMTP over TLS P. Hoffman

RFC 2505
Anti-Spam Recommendations for SMTP MTAs G. Lindberg

Appendix B. Related protocol specifications 157

RFC 2523
Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

RFC 2535
Domain Name System Security Extensions D. Eastlake 3rd

RFC 2538
Storing Certificates in the Domain Name System (DNS) D. Eastlake 3rd, O.
Gudmundsson

RFC 2539
Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D. Eastlake
3rd

RFC 2540
Detached Domain Name System (DNS) Information D. Eastlake 3rd

RFC 2554
SMTP Service Extension for Authentication J. Myers

RFC 2570
Introduction to Version 3 of the Internet-standard Network Management
Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 2571
An Architecture for Describing SNMP Management Frameworks B. Wijnen, D.
Harrington, R. Presuhn

RFC 2572
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 2573
SNMP Applications D. Levi, P. Meyer, B. Stewart

RFC 2574
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2575
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2576
Co-Existence between Version 1, Version 2, and Version 3 of the Internet-standard
Network Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 2578
Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.
Perkins, J. Schoenwaelder

RFC 2579
Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2580
Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J.
Schoenwaelder

RFC 2581
TCP Congestion Control M. Allman, V. Paxson, W. Stevens

RFC 2583
Guidelines for Next Hop Client (NHC) Developers R. Carlson, L. Winkler

158 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 2591
Definitions of Managed Objects for Scheduling Management Operations D. Levi,
J. Schoenwaelder

RFC 2625
IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W. Rickard

RFC 2635
Don't SPEW A Set of Guidelines for Mass Unsolicited Mailings and Postings
(spam*) S. Hambridge, A. Lunde

RFC 2637
Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J. Taarud,
W. Little, G. Zorn

RFC 2640
Internationalization of the File Transfer Protocol B. Curtin

RFC 2665
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J.
Johnson

RFC 2671
Extension Mechanisms for DNS (EDNS0) P. Vixie

RFC 2672
Non-Terminal DNS Name Redirection M. Crawford

RFC 2675
IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710
Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.
Haberman

RFC 2711
IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740
OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

RFC 2753
A Framework for Policy-based Admission Control R. Yavatkar, D. Pendarakis,
R. Guerin

RFC 2782
A DNS RR for specifying the location of services (DNS SRV) A. Gubrandsen, P.
Vixix, L. Esibov

RFC 2821
Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822
Internet Message Format P. Resnick, Ed.

RFC 2840
TELNET KERMIT OPTION J. Altman, F. da Cruz

RFC 2845
Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake 3rd, B. Wellington

RFC 2851
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

Appendix B. Related protocol specifications 159

RFC 2852
Deliver By SMTP Service Extension D. Newman

RFC 2874
DNS Extensions to Support IPv6 Address Aggregation and Renumbering M.
Crawford, C. Huitema

RFC 2915
The Naming Authority Pointer (NAPTR) DNS Resource Record M. Mealling, R.
Daniel

RFC 2920
SMTP Service Extension for Command Pipelining N. Freed

RFC 2930
Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941
Telnet Authentication Option T. Ts'o, ed., J. Altman

RFC 2942
Telnet Authentication: Kerberos Version 5 T. Ts'o

RFC 2946
Telnet Data Encryption Option T. Ts'o

RFC 2952
Telnet Encryption: DES 64 bit Cipher Feedback T. Ts'o

RFC 2953
Telnet Encryption: DES 64 bit Output Feedback T. Ts'o

RFC 2992
Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019
IP Version 6 Management Information Base for The Multicast Listener Discovery
Protocol B. Haberman, R. Worzella

RFC 3060
Policy Core Information Model—Version 1 Specification B. Moore, E. Ellesson, J.
Strassner, A. Westerinen

RFC 3152
Delegation of IP6.ARPA R. Bush

RFC 3164
The BSD Syslog Protocol C. Lonvick

RFC 3207
SMTP Service Extension for Secure SMTP over Transport Layer Security P.
Hoffman

RFC 3226
DNSSEC and IPv6 A6 aware server/resolver message size requirements O.
Gudmundsson

RFC 3291
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

RFC 3363
Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name
System R. Bush, A. Durand, B. Fink, O. Gudmundsson, T. Hain

160 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

RFC 3376
Internet Group Management Protocol, Version 3 B. Cain, S. Deering, I.
Kouvelas, B. Fenner, A. Thyagarajan

RFC 3390
Increasing TCP's Initial Window M. Allman, S. Floyd, C. Partridge

RFC 3410
Introduction and Applicability Statements for Internet-Standard Management
Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 3411
An Architecture for Describing Simple Network Management Protocol (SNMP)
Management Frameworks D. Harrington, R. Presuhn, B. Wijnen

RFC 3412
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 3413
Simple Network Management Protocol (SNMP) Applications D. Levi, P. Meyer,
B. Stewart

RFC 3414
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 3415
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 3416
Version 2 of the Protocol Operations for the Simple Network Management
Protocol (SNMP) R. Presuhn, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 3417
Transport Mappings for the Simple Network Management Protocol (SNMP) R.
Presuhn, J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 3418
Transport Mappings for the Simple Network Management Protocol (SNMP) R.
Presuhn, J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 3419
Textual Conventions for Transport Addresses M. Daniele, J. Schoenwaelder

RFC 3484
Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

RFC 3493
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, J.
McCann, W. Stevens

RFC 3513
Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S.
Deering

RFC 3526
More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key
Exchange (IKE) T. Kivinen, M. Kojo

Appendix B. Related protocol specifications 161

RFC 3542
Advanced Sockets Application Programming Interface (API) for IPv6 W. Richard
Stevens, M. Thomas, E. Nordmark, T. Jinmei

RFC 3566
The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec S. Frankel, H.
Herbert

RFC 3569
An Overview of Source-Specific Multicast (SSM) S. Bhattacharyya, Ed.

RFC 3584
Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard
Network Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 3602
The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R. Glenn, S.
Kelly

RFC 3629
UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658
Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3678
Socket Interface Extensions for Multicast Source Filters D. Thaler, B. Fenner, B.
Quinn

RFC 3715
IPsec-Network Address Translation (NAT) Compatibility Requirements B. Aboba,
W. Dixon

RFC 3810
Multicast Listener Discovery Version 2 (MLDv2) for IPv6 R. Vida, Ed., L.
Costa, Ed.

RFC 3947
Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A. Huttunen,
V. Volpe

RFC 3948
UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V. Volpe,
L. DiBurro, M. Stenberg

RFC 4001
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

RFC 4007
IPv6 Scoped Address Architecture S. Deering, B. Haberman, T. Jinmei, E.
Nordmark, B. Zill

RFC 4022
Management Information Base for the Transmission Control Protocol (TCP) R.
Raghunarayan

RFC 4106
The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload
(ESP) J. Viega, D. McGrew

RFC 4109
Algorithms for Internet Key Exchange version 1 (IKEv1) P. Hoffman

162 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|

|
|
|

|
|

RFC 4113
Management Information Base for the User Datagram Protocol (UDP) B. Fenner,
J. Flick

RFC 4191
Default Router Preferences and More-Specific Routes R. Draves, D. Thaler

RFC 4217
Securing FTP with TLS P. Ford-Hutchinson

RFC 4292
IP Forwarding Table MIB B. Haberman

RFC 4293
Management Information Base for the Internet Protocol (IP) S. Routhier

RFC 4301
Security Architecture for the Internet Protocol S. Kent, K. Seo

RFC 4302
IP Authentication Header S. Kent

RFC 4303
IP Encapsulating Security Payload (ESP) S. Kent

RFC 4304
Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation
(DOI) for Internet Security Association and Key Management Protocol
(ISAKMP) S. Kent

RFC 4306
Internet Key Exchange (IKEv2) Protocol C. Kaufman, Ed.

RFC 4307
Cryptographic Algorithms for Use in the Internet Key Exchange Version 2
(IKEv2) J. Schiller

RFC 4308
Cryptographic Suites for IPsec P. Hoffman

RFC 4434
The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol P.
Hoffman

RFC 4552
Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

RFC 4678
Server/Application State Protocol v1 A. Bivens

RFC 4718
IKEv2 Clarifications and Implementation Guidelines P. Eronen, P. Hoffman

RFC 4753
ECP Groups for IKE and IKEv2 D. Fu, J. Solinas

RFC 4754
IKE and IKEv2 Authentication Using the Elliptic Curve Digital Signature
Algorithm (ECDSA) D. Fu, J. Solinas

RFC 4809
Requirements for an IPsec Certificate Management Profile C. Bonatti, Ed., S.
Turner, Ed., G. Lebovitz, Ed.

Appendix B. Related protocol specifications 163

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

RFC 4835
Cryptographic Algorithm Implementation Requirements for Encapsulating
Security Payload (ESP) and Authentication Header (AH) V. Manral

RFC 4862
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten, T. Jinmei

RFC 4868
Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec S.
Kelly, S. Frankel

RFC 4869
Suite B Cryptographic Suites for IPsec L. Law, J. Solinas

RFC 4941
Privacy Extensions for Stateless Address Autoconfiguration in IPv6 T. Narten, R.
Draves, S. Krishnan

RFC 4945
The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX B.
Korver

RFC 5014
IPv6 Socket API for Source Address Selection E. Nordmark, S. Chakrabarti, J.
Laganier

RFC 5095
Deprecation of Type 0 Routing Headers in IPv6 J. Abley, P. Savola, G.
Neville-Neil

RFC 5175
IPv6 Router Advertisement Flags Option B. Haberman, Ed., R. Hinden

RFC 5282
Using Authenticated Encryption Algorithms with the Encrypted Payload of the
Internet Key Exchange version 2 (IKEv2) Protocol D. Black, D. McGrew

Internet drafts

Internet drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Other groups may also distribute
working documents as Internet drafts. You can see Internet drafts at
http://www.ietf.org/ID.html.

Several areas of IPv6 implementation include elements of the following Internet
drafts and are subject to change during the RFC review process.

Draft Title and Author

draft-ietf-ipngwg-icmp-v3-07
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification A. Conta, S. Deering

164 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

http://www.ietf.org/ID.html

Appendix C. Accessibility

Publications for this product are offered in Adobe® Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you may view the information through the z/OS
Internet Library Web site or the z/OS Information Center. If you continue to
experience problems, send an e-mail to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at www.ibm.com/systems/z/
os/zos/bkserv/.

© Copyright IBM Corp. 2002, 2010 165

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

166 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer all of the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14 Shimotsuruma,, Yamato-Shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2002, 2010 167

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

168 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

IBM is required to include the following statements in order to distribute portions
of this document and the software described herein to which contributions have
been made by The University of California. Portions herein © Copyright 1979,
1980, 1983, 1986, Regents of the University of California. Reproduced by
permission. Portions herein were developed at the Electrical Engineering and
Computer Sciences Department at the Berkeley campus of the University of
California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,
Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights
Reserved.

Some portions of this publication relating to X Window System are Copyright ©
1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment
Corporation, and Hewlett-Packard Corporation portions of this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T., Digital, and Hewlett-Packard make no representation about the
suitability of this software for any purpose. It is provided "as is" without express
or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:

Notices 169

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code
originating from the software program "Popper." Popper is Copyright ©1989-1991
The Regents of the University of California, All Rights Reserved. Popper was
created by Austin Shelton, Information Systems and Technology, University of
California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,
and distribute the "Popper" software contained herein for any purpose, without
fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in
all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY
FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR
MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE
POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS
IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Copyright © 1983 The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that the
above copyright notice and this paragraph are duplicated in all such forms and
that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the
University of California, Berkeley. The name of the University may not be used to

170 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:
This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Furthermore
if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.I.T.
software. M.I.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

Notices 171

Copyright © 1998 by the FundsXpress, INC. All rights reserved.

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be
given attribution as the author of the parts of the library used. This can be in the
form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

172 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

1. Redistributions of source code must retain the copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement: "This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com)". The word 'cryptographic'
can be left out if the routines from the library being used are not cryptographic
related.

4. If you include any Windows specific code (or a derivative thereof) from the
apps directory (application code) you must include acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The license and distribution terms for any publicly available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put
under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and
the Regents of the University of California. All rights reserved.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Notices 173

Copyright © 1999,2000,2001 Hewlett-Packard Company

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, provided that the
above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

174 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated in
the United States, and/or other countries.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 175

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

176 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Bibliography

This bibliography contains descriptions of the documents in the z/OS
Communications Server library.

z/OS Communications Server documentation is available in the following forms:
v Online at the z/OS Internet Library web page at www.ibm.com/systems/z/os/

zos/bkserv/
v In softcopy on CD-ROM collections. See “Softcopy information” on page xiii.

z/OS Communications Server library updates

An index to z/OS Communications Server book updates is at http://
www.ibm.com/support/docview.wss?uid=swg21178966. Updates to documents are
also available on RETAIN® and in information APARs (info APARs). Go to
http://www.ibm.com/software/network/commserver/zos/support to view
information APARs. In addition, Info APARs for z/OS documents are in z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/ BOOKS/ZIDOCMST/
CCONTENTS.

z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the
following tables.

Planning

Title Number Description

z/OS Communications Server:
New Function Summary

GC31-8771 This document is intended to help you plan for new IP for
SNA function, whether you are migrating from a previous
version or installing z/OS for the first time. It summarizes
what is new in the release and identifies the suggested and
required modifications needed to use the enhanced functions.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC31-8885 This document is a high-level introduction to IPv6. It
describes concepts of z/OS Communications Server's support
of IPv6, coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

Title Number Description

z/OS Communications Server: IP
Configuration Guide

SC31-8775 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS UNIX
System Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document in conjunction with the
z/OS Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2002, 2010 177

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/software/network/commserver/zos/support
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Description

z/OS Communications Server: IP
Configuration Reference

SC31-8776 This document presents information for people who want to
administer and maintain IP. Use this document in conjunction
with the z/OS Communications Server: IP Configuration Guide.
The information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC31-8777 This document presents the major concepts involved in
implementing an SNA network. Use this document in
conjunction with the z/OS Communications Server: SNA
Resource Definition Reference.

z/OS Communications Server:
SNA Resource Definition Reference

SC31-8778 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document
in conjunction with the z/OS Communications Server: SNA
Network Implementation Guide.

z/OS Communications Server:
SNA Resource Definition Samples

SC31-8836 This document contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server: IP
Network Print Facility

SC31-8833 This document is for system programmers and network
administrators who need to prepare their network to route
SNA, JES2, or JES3 printer output to remote printers using
TCP/IP Services.

Operation

Title Number Description

z/OS Communications Server: IP
User's Guide and Commands

SC31-8780 This document describes how to use TCP/IP applications. It
contains requests that allow a user to log on to a remote host
using Telnet, transfer data sets using FTP, send and receive
electronic mail, print on remote printers, and authenticate
network users.

z/OS Communications Server: IP
System Administrator's
Commands

SC31-8781 This document describes the functions and commands helpful
in configuring or monitoring your system. It contains system
administrator's commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP
configuration process.

z/OS Communications Server:
SNA Operation

SC31-8779 This document serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications Server:
Quick Reference

SX75-0124 This document contains essential information about SNA and
IP commands.

178 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Customization

Title Number Description

z/OS Communications Server:
SNA Customization

SC31-6854 This document enables you to customize SNA, and includes
the following:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

Title Number Description

z/OS Communications Server: IP
Sockets Application Programming
Interface Guide and Reference

SC31-8788 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own
client or server application. You can also use this document to
adapt your existing applications to communicate with each
other using sockets over TCP/IP.

z/OS Communications Server: IP
CICS Sockets Guide

SC31-8807 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the
socket interface for CICS using z/OS TCP/IP.

z/OS Communications Server: IP
IMS Sockets Guide

SC31-8830 This document is for programmers who want application
programs that use the IMS TCP/IP application development
services provided by the TCP/IP Services of IBM.

z/OS Communications Server: IP
Programmer's Guide and Reference

SC31-8787 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program
your own applications in a TCP/IP environment. These
functions provide support for application facilities, such as
user authentication, distributed databases, distributed
processing, network management, and device sharing.
Familiarity with the z/OS operating system, TCP/IP protocols,
and IBM Time Sharing Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC31-8829 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program
in either the same or a different domain.

z/OS Communications Server:
SNA Programmer's LU 6.2 Guide

SC31-8811 This document describes how to use the SNA LU 6.2
application programming interface for host application
programs. This document applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with other
session types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications Server:
SNA Programmer's LU 6.2
Reference

SC31-8810 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC31-8808 This document describes how applications use the
communications storage manager.

Bibliography 179

Title Number Description

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC31-8828 This document describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP application
programs. The document provides guide and reference
information about CMIP services and the SNA topology agent.

Diagnosis

Title Number Description

z/OS Communications Server: IP
Diagnosis Guide

GC31-8782 This document explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in the
TCP/IP product code. It explains how to gather information
for and describe problems to the IBM Software Support
Center.

z/OS Communications Server:
ACF/TAP Trace Analysis
Handbook

GC23-8588-00 This document explains how to gather the trace data that is
collected and stored in the host processor. It also explains how
to use the Advanced Communications Function/Trace
Analysis Program (ACF/TAP) service aid to produce reports
for analyzing the trace data information.

z/OS Communications Server:
SNA Diagnosis Vol 1, Techniques
and Procedures and z/OS
Communications Server: SNA
Diagnosis Vol 2, FFST Dumps and
the VIT

GC31-6850

GC31-6851

These documents help you identify an SNA problem, classify
it, and collect information about it before you call the IBM
Support Center. The information collected includes traces,
dumps, and other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes

Title Number Description

z/OS Communications Server:
SNA Messages

SC31-8790 This document describes the ELM, IKT, IST, IUT, IVT, and USS
messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server: IP
Messages Volume 1 (EZA)

SC31-8783 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server: IP
Messages Volume 2 (EZB, EZD)

SC31-8784 This volume contains TCP/IP messages beginning with EZB or
EZD.

z/OS Communications Server: IP
Messages Volume 3 (EZY)

SC31-8785 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server: IP
Messages Volume 4 (EZZ, SNM)

SC31-8786 This volume contains TCP/IP messages beginning with EZZ
and SNM.

z/OS Communications Server: IP
and SNA Codes

SC31-8791 This document describes codes and other information that
appear in z/OS Communications Server messages.

180 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Index

A
accessibility 165
address assignment 70
address autoconfiguration 1
address resolution 33
address states 17
addressing 7
advanced socket APIs 105
AF_INET6 support, disabling 53
aggregatable global addresses,

unicast 11
ancillary data 106, 118, 120
APIs 75
APIs, advanced 105
application layer gateway 49
application support, scope

information 136
authentication, with IPv6 OSPF 24
autoconfiguration 1, 35

stateless 70
autoconfiguration, stateless address 34
automatic tunnels 127
automation impacts 55

B
basic socket API extensions for IPv6

address testing macros 88
Basic socket API extensions for IPv6

socket options 89
BPXPRMxx

enabling IPv6 support 60
broadcast 26

C
C sockets 76
checksum processing for RAW

applications 117
coexistence overview, application 129
Common INET

AF_INET6 support 52
Common INET environment 52

configuring 54
disabling AF_INET6 support 53

Communications Server for z/OS, online
information xv

configuration statements 61
configured tunnels 126

D
data stream, including IP addresses 101
data tracing 68
default address selection 40
default address selection policy table

overview 40
default destination address selection 41
default source address selection 43

DHCPv6 1
diagnosing problems

IPCS 68
tracing 68

disability 165
DNS definitions, updating 72
DNS, guidelines 72
DNS, online information xvi
dual-mode stack 47, 48, 51

INET environment 52
dual-mode stack support 1
dual-mode stacks 53
duplicate address detection 36
duplicate address detection (DAD) 32
Dynamic routing protocols 22

E
exits 64
extension headers 19

F
fragmentation 20

support 20
FTP exits 64

G
getaddrinfo 81
gethostbyaddr 86
gethostbyname 81
getnameinfo 86
getservbyname 81
getservbyport 86

H
header format 1
hierarchical addressing 1
hierarchical addressing and routing

infrastructure 1
hop limit options 120
host names, defining 72

I
IBM Software Support Center,

contacting xii
ICMP considerations 123
ICMPv6 25
inetd 64
inetd.conf file 65
Information APARs xiii
interface ID 70
interface identifiers

IPv6 unicast address 13
Internet, finding z/OS information

online xv

IP addresses, impermanence 101
IP header format 1
IPAQENET6 interface type 69
IPAQIDIO6 interface type 69
IPPROTO_IPV6 level 106
IPv4 and dual-mode stacks 48
IPv4 and IPv6 47
IPv4 environment 46
IPv4 TCP server program 101
IPv4-mapped IPv6 address 13
IPv4-only stack 50

INET environment 51
IPv4-only stacks 53
IPv6

address space 1
applications not enabled 140
routing and addressing 1
supported standards 135
z/OS-specific features 137

IPv6 address
anycast 17
categories 10
model 9
multicast 14
textual representation 7
types 9
unicast 11

IPv6 address preference
configuring 45
displaying 46

IPv6 address space 9
IPv6 address states 17
IPv6 addresses 17, 99
IPv6 and IPv4 characteristics,

comparison 4
IPv6 header 1

header options 2
IPv6 interface identifiers 13
IPv6 packet header 105
IPv6 prefix

textual representation 8
IPv6 temporary addresses

configuring a client application 38
configuring TCP/IP stack to

generate 37
displaying information 39
using for security issues 37

IPv6-only stack 51
IPv6, enabling applications 95

K
keyboard 165

L
license, patent, and copyright

information 167
link-layer device support 137
link-local addresses 12

© Copyright IBM Corp. 2002, 2010 181

local-use address, unicast 12
LookAt xiii
loopback address, unicast 13

M
mainframe

education xiii
migration and coexistence overview,

application 129
migration approaches 131
migration overview, application 129
MPCPTP6 interface type 69
MTU discovery, options 107
multicast 14

groups 16
scope 15

multicast address format 14
multicast and IPv6, using 100
Multicast Listener Discovery 26
multicasting 26
multipath routes 24

N
NAT 50
NAT-PT 133
native TCP/IP socket APIs 76
neighbor discovery (ND) 3, 27
neighbor node interaction, protocol 3
neighbor unreachability detection 34
Netstat 67
Network address translation (NAT) 50
network prefix 70

O
OMPROUTE 22
OMPROUTE, guidelines 73
options, support 2
orexecd 64
orshd 64
otelnetd 64
outgoing interface, specifying 121
output format 67

P
packet header, controlling the

content 105
packet tracing 68
packets, controlling sending 109
path MTU discovery 20
Ping 68
Policy Agent 65
policy table for default address selection

configuring 45
displaying 46

prerequisite information xiii
proxy 132

Q
QoS classification data 117
QoS policies 65

R
RAW applications, checksum

processing 117
RAW sockets 121
received packets 114
redirect messages 3
redirect processing

IGNOREREDIRECT on
IPCONFIG6 32

resolver 62
configuration files 62
search order 62

resolver and DNS 63
resolver API processing 98
RFC (request for comments) 141

accessing online xv
route selection 24
route timeouts 31
router advertisements 31

overview 27
prefix information option 29
route information option 28

router discovery 21
routing 20

VARY TCPIP,,OBEYFILE
command 25

routing infrastructure 1

S
scope 9

multicast 15
scope information 81
scope information, on host name 136
scope information, on IP address 136
scope information, support 58
scope zones 9
shortcut keys 165
SIIT 132
site-local addresses 70
SMF records 65
SNA application access 56
SNMP 66
socket API extensions 79
socket API extensions for IPv6

address conversion functions 87
address families 79
design considerations 79
interface identification 89
name and address resolution

functions 81
name translation 81
Protocol families 79
special IP addresses 80

socket APIs 75, 76
socket APIs, advanced 105
socket options and ancillary data,

interactions 120
Sockets Secure (SOCKS) 49
SOCKS 49, 132
softcopy information xiii
source address, options 120
SOURCEVIPA, for IPv6 36
stateless address autoconfiguration 34
static routes 20
static routes, guidelines 73

sysplex support 137

T
takeover function, interface 36
TCP server program enabled for

IPv6 102
TCP/IP

online information xv
protocol specifications 141

Technotes xiii
textual representation

IPv6 addresses 7
Traceroute 68
trademark information 175
translation mechanisms 131

NAT-PT 133
proxy 132
SIIT 132
SOCKS 132

tunneling 46
6over4 tunnels 128
6to4 addresses 127
automatic tunnels 127
configured tunnels 126
overview 125

U
unspecified address, unicast 13
user exits 64

V
VARY TCPIP,,OBEYFILE command 31
VIPA 70, 73

addresses 36
duplicate address detection 36
prefixes 36
source address selection 44

VTAM, online information xv

Z
z/OS Basic Skills information center xiii
z/OS Basic Skills Information

Center xiii
z/OS UNIX Assembler Callable

Services 76
z/OS, documentation library listing 177

182 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

Communicating your comments to IBM

If you especially like or dislike anything about this document, please use one of
the methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Please send your comments to us in either of the following ways:
v If you prefer to send comments by FAX, use this number: 1+919-254-1258
v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com
v If you prefer to send comments by post, use this address:

International Business Machines Corporation
Attn: z/OS Communications Server Information Development
P.O. Box 12195, 3039 Cornwallis Road
Department AKCA, Building 501
Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:
v Title and publication number of this document
v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2002, 2010 183

mailto:comsvrcf@us.ibm.com

184 z/OS V1R12.0 Comm Srv: IPv6 Network and Appl Design Guide

����

Program Number: 5694-A01

Printed in USA

SC31-8885-08

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology that are used in this document
	Prerequisite and related information
	How to send your comments

	Summary of changes
	Chapter 1. Internet Protocol Version 6
	Neighbor discovery
	Comparison of IPv6 and IPv4 characteristics

	Chapter 2. IPv6 addressing
	Textual representation of IPv6 addresses
	Textual representation of IPv6 prefixes
	IPv6 address space
	IPv6 addressing model
	Scope zones
	Categories of IPv6 addresses
	Unicast IPv6 addresses
	Aggregatable global addresses
	Local-use addresses
	Loopback address
	Unspecified address
	IPv4-mapped IPv6 addresses
	IPv6 interface identifiers

	Multicast IPv6 Addresses
	Multicast address format
	Multicast scope
	Multicast groups

	Anycast IPv6 addresses

	Typical IPv6 addresses assigned to a node
	IPv6 address states

	Chapter 3. IPv6 protocol
	Extension headers
	Fragmentation in an IPv6 network
	Fragmentation and UDP/RAW

	Path MTU discovery
	IPv6 routing
	Router discovery
	ICMPv6 redirects
	Dynamic routing protocols
	Tip for IPv6 OSPF routing protocol addressing conventions
	Authentication with the IPv6 OSPF routing protocol

	Considerations for route selection
	Considerations for multipath routes
	The VARY TCPIP,,OBEYFILE command and routes

	ICMPv6
	Multicast Listener Discovery
	Neighbor discovery
	Router advertisements
	Route information option for router advertisements
	Prefix information option for router advertisements
	Route timeouts
	VARY TCPIP,,OBEYFILE command rules

	Redirect processing
	Duplicate address detection
	Address resolution
	Neighbor unreachability detection

	Assigning IP addresses to interfaces
	Stateless address autoconfiguration
	Autoconfiguration considerations

	IP address takeover following an interface failure
	How to get addresses for VIPAs

	IPv6 temporary addresses with random interface IDs
	Configuring a TCP/IP stack to generate IPv6 temporary addresses
	Enabling a client application to use IPv6 temporary or public addresses
	Displaying the configured and generated temporary or public address information

	Default address selection
	Policy table for IPv6 default address selection
	Default destination address selection
	Default source address selection
	VIPA considerations with source address selection

	Configuring the policy table for default address selection
	Displaying the policy table for default address selection

	Enabling IPv6 communication between IPv6 nodes or networks in an IPv4 environment
	Enabling end-to-end communication between IPv4 and IPv6 applications
	IPv6 application on a dual-mode stack
	IPv4 application on a dual-mode stack
	Application layer gateways and protocol translation
	Network address translation

	Considerations for configuring z/OS for IPv6
	IPv4-only stack
	IPv6-only stack
	Dual-mode stack

	INET considerations
	IPv4-only stack
	Dual-mode IPv4/IPv6 stack

	Common INET considerations
	Enabling AF_INET6 support in a Common INET environment
	Disabling AF_INET6 support in a Common INET environment
	Supporting a mixture of dual-mode stacks and IPv4-only stacks
	Configuring a Common INET environment

	Chapter 4. Configuring support for z/OS
	Ensure that important features are supported over IPv6
	Assess automation and application impacts due to Netstat and message changes
	Determine how remote sites connect to the local host
	SNA access
	Avoid using IP addresses for identifying remote hosts
	Using the BIND parameter on the PORT statement
	Security considerations
	Support for scope information
	Enabling IPv6 support
	Configuration statements for configuring IPv6 addresses

	Resolver processing
	Resolver configuration
	Resolver communications with the Domain Name System

	User exits
	Which applications started with inetd are IPv6 enabled?
	Modifying the inetd.conf file

	IPv6 and SMF records
	IPv6 and the Policy Agent
	IPv6 and SNMP
	Monitoring the TCP/IP network
	IPv6 and Netstat
	Control of output format
	What has changed?

	IPv6 and Ping and Traceroute

	Diagnosing problems with IPv6

	Chapter 5. Configuration guidelines
	Connecting to an IPv6 network
	Assigning IPv6 addresses
	Updating DNS definitions
	Including static VIPAs in DNS
	Defining IPv4-only host names and IPv4/IPv6 host names

	Using source VIPA
	Using dynamic or static routing to improve network selection
	Connecting to non-local IPv4 locations
	IPv6-only application access to IPv4-only application

	Chapter 6. API support
	UNIX socket APIs
	Native TCP/IP socket APIs

	Chapter 7. Basic socket API extensions for IPv6
	Design considerations
	Protocol families
	Address families
	Special IP addresses

	Name and address resolution functions
	Protocol-independent nodename and service name translation
	Socket address structure to host name and service name
	Address conversion functions
	Address testing macros

	Interface identification
	Socket options to support IPv6
	Option to control sending of unicast packets
	Options to control sending of multicast packets
	Options to control receiving of multicast packets
	Socket option to control IPv4 and IPv6 communications
	Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO_IP levels

	Chapter 8. Enabling an application for IPv6
	Changes to enable IPv6 support
	Support for unmodified applications
	Application awareness of whether system is IPv6 enabled
	Socket address structure changes
	Address conversion functions
	Resolver API processing
	Special IPv6 addresses
	Passing ownership of sockets across applications using givesocket and takesocket APIs
	Using multicast and IPv6
	IP addresses might not be permanent
	Including IP addresses in the data stream
	Example of an IPv4 TCP server program
	Example of the simple TCP server program enabled for IPv6

	Chapter 9. Advanced socket APIs
	Controlling the content of the IPv6 packet header
	Socket options and ancillary data to support IPv6 (IPPROTO_IPV6 level)
	Options for path MTU discovery
	Options to control the sending of packets
	Options that provide information about packets that have been received
	Option to provide checksum processing for RAW applications
	Option to provide QoS classification data

	Socket option to support ICMPv6 (IPPROTO_ICMPV6 level)

	Using ancillary data on sendmsg() and recvmsg()
	Interactions between socket options and ancillary data
	Hop limit options
	Options for setting the source address
	Options for specifying the outgoing interface

	RAW sockets
	RAW protocol values
	Application visibility of IP headers
	ICMP considerations
	Checksumming data

	Chapter 10. Advanced concepts and topics
	Tunneling
	Configured tunnels
	Automatic tunnels
	6to4 addresses
	6over4 tunnels

	Application migration and coexistence overview
	Application migration approaches
	Translation mechanisms
	SOCKS gateway
	Proxy
	Stateless IP/ICMP Translation Algorithm
	Network address translation - protocol translation

	Appendix A. IPv6 support tables
	Supported IPv6 standards
	Application support of scope information on host name or IP address
	z/OS-specific features
	Applications not enabled for IPv6

	Appendix B. Related protocol specifications
	Appendix C. Accessibility
	Notices
	Policy for unsupported hardware
	Trademarks

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Z

	Communicating your comments to IBM

